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The perturbation expansion for a general class of  many-fermion systems with a 
nonnested, nonspherical Fermi surface is renormalized to all orders. In the limit 
as the infrared cutoff is removed, the counterterms converge to a finite limit 
which is differentiable in the band structure. The map from the renormalized to 
the bare band structure is shown to be locally injective. A new classification of 
graphs as overlapping or nonoverlapping is given, and improved power counting 
bounds are derived from it. They imply that the only subgraphs that can generate 
r factorials in the r th  order of the renormalized perturbation series are indeed the 
ladder graphs and thus give a precise sense to the statement that "ladders are the 
most  divergent diagrams." Our  results apply directly to the Hubbard model at 
any filling except for half-filling. The half-filled Hubbard  model is treated in 
another  place. 
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1. I N T R O D U C T I O N  AND OVERVIEW 

1.1. The Problem 

Consider the following problem in many-body physics. Let A be a finite 
box in d-dimensional space, i.e., A c R a or A c F, where F is a lattice in 
R a, let c.(x) and c+(x)  be fermionic annihilation and creation operators 
obeying the canonical anticommutation relations { c . ( x ) , c ~ ( x ' ) } =  
O~ ,O(x -x ' ) ,  and let ~ be the fermionic Fock space generated by this 
algebra/~ Let HA = Ho + 2V be the operator on ~g iven  by 

H o = ~ f ds(x) c+(x)( T+ U) G,(x) ( 1.1 ) 
o* 

where Tis an operator describing the one-particle kinetic energy, U is multi- 
plication by a periodic potential, and ~ ds(x) denotes J,f dx for a continuous 
system and Zx~3 for a system on a lattice. Let n~ (x )=c+(x )c~ (x )  be the 
number operator at x for spin a. The interaction 

t ~.o,(x - x ) n~,(x') (1.2) 
a , a '  

is assumed to be short-range (see Assumption A1 below). The Hamiltonian 
H A describes many electrons in a crystal or on a lattice that interact with 
a stationary ionic background through U and with each other through the 
pair potential V. If the coupling strength of the electron-electron interac- 
tion 2, = 0, the electrons move independently according to the one-particle 
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Schr6dinger operator T +  U(x). In the continuum system T =  - A / 2 m  is the 
Laplacian and U(x + 7) = U(x) for all 7 ~ F, where the lattice F is generated 
by d linearly independent vectors in R d (e.g., F = 7/d); in the case of a lattice 
system, U=  0 and the kinetic energy T is defined by the hopping matrix 
between the sites of the lattice. For 2 ~-0, the potential V takes into 
account interactions such as screened electromagnetic interactions. A slight 
generalization of (1.2) allows for inclusion of phonon-mediated inter- 
actions. 

Let fl = 1 /kT  be the inverse temperature and define the grand canoni- 
cal partition function Z.4 as 

ZA = tr e -plu'  --.ttN.I} (1.3) 

where 

N A = ~  I,, ds(x) n,(x) (1.4) 

is the number operator, Ft is the chemical potential, and the trace is over 
Fock space. For an observable (g, i.e., a polynomial in the fermion 
operators, the thermal expectation value is defined as 

1 
(~o) ~, = -g-- tr( e -P lu . , -  ~,N~,~ (O ) (1.5) 

LA 

The question we are interested in is whether the thermodynamic 
limit ff = l i m A _ ~  fqA of the connected Green functions ffA = 
(C+(X~)'"C~;,,(X',,))A . . . . . .  which are special cases of ~0 above, exists and 
whether in finite volume a weak-coupling expansion 

fq = ~ 2rG,. (1.6) 
r ~ 0  

can be used to determine the dependence of ff on 2. 
For this question the most interesting, because most singular, case is 

that of zero temperature, T=0 .  For positive temperature or the finite- 
volume lattic~ case the expansion obtained by expanding the factor e xv in 
2 is convergent, but its radius of convergence shrinks to zero in the ther- 
modynamic and zero-temperature limit: at T =  0 and in infinite volume, 
one cannot even pose the question of convergence of the expansion in 2 
because the coefficients G,. already diverge for r/> 3. In the limit T ~  0, 
(1.5) reduces to expectation values in the ground state of the system, so 
physically the question is about the nature of the many-particle ground 
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state of the system and the validity of perturbation theory to calculate n-point 
functions. The radius of convergence of the unrenormalized expansion in 
finite volume shrinks to zero as the volume goes to infinity. Thus, although 
the expansion converges for the large but finite systems which these models 
are to describe, this is true only if 2 is of order 1/volume, which is obviously 
unrealistic for any macroscopic system. Consequently, the unrenormalized 
expansion will not give insight into the properties of the ground state. 

In this paper we consider formal perturbation theory. That is, we 
study the thermodynamic limit of the coefficient functions Gr. By an 
analysis similar to ref. 2, the expansion is renormalized so that these func- 
tions converge as the volume goes to infinity. More precisely, we introduce 
a well-defined infinite-volume model obtained by cutting off the singularity 
at the Fermi surface (i.e., introducing an infrared cutoff) and renormalized 
by including counterterms K in the action, and then show that all coef- 
ficients Gr have limits as the infrared cutoff is removed. Although we do not 
go through the finite-volume bounds here, it will be clear from the way our 
bounds are derived that the same procedure can be applied to obtain an 
expansion in finite volume with coefficients that converge in the thermo- 
dynamic limit. The counterterms are bilinear in the fermions and can there- 
fore be viewed as a modification of H o (although they are treated as extra 
interaction vertices in the formal expansion). They also have finite limits as 
the infrared cutoff is removed. The addition of the counterterms K changes 
the free Hamiltonian Ho to /to = H0 + K, where K depends on 2 and Ho. 
Thus the free part of the model is no longer fixed, but changes with 2 as 
well: introducing counterterms changes the model. One can, however, obtain 
an infrared finite expansion for a prescribed free model, i.e., with /qo 
prescribed, by solving [-I o = Ho + K ( H o )  for Ho. This is far from straight- 
forward because for the nonspherical Fermi surfaces that we study here, 
the counterterms are not just constants (such as a shift in the chemical 
potential l~), but functions, i.e., they change the one-particle kinetic 
energy operator T in a nontrivial way. Therefore, the equation for Ho is an 
equation in a function space. In this paper, we prove that it has at most one 
solution Ho. In a separate paper, ~~ we prove the existence of the solution. 
The equation relating Ho a n d / 7  0 will also be discussed in more detail below. 

Except for special cases, the renormalized expansion is, as an expan- 
sion in 2, not convergent but only locally Borel summable because the coef- 
ficients behave as Gr~  r!. The occurrence of these factorials indicates that 
the nonperturbative ground state may exhibit symmetry breaking. For  
example, if the interaction is attractive in the zero angular momentum sec- 
tor, this is the case. ~31 One of the main results we shall prove here is that 
for a very wide class of models, and regardless of the sign of the interac- 
tion, the r factorials in individual graphs come only from ladder diagrams. 



Perturbation Theory Around Nonnested Fermi Surfaces 1213 

By "locally Borel summable" we mean here and in Theorem 1.2 that 
the Borel transform is analytic in a disk of strictly positive radius R > 0. 
This does not imply that the function is "Borel summable" in the sense that 
it can be reconstructed uniquely from its Borel transform. For that, one 
would need, among other things, analyticity of the latter in a neighborhood 
of the entire positive real axis. 

Renormalization has been done tz~ for the continuum case where 
T=--A/2m and U=0 .  We shall refer to this case as the spherical case 
since the band structure (defined below) has an O(d) rotational symmetry. 
The procedure for removing the divergences in the present case is similar 
to the spherical case in that we have to renormalize two-legged insertions. 
However, the present work is a nontrivial extension of ref. 2 because in 
contrast to the spherical case, the counterterms are not constants. In brief, 
subtracting functions is much more complicated than subtracting con- 
stants. In particular, the regularity properties of the counterterms are quite 
subtle. 

In the remainder of this introductory section, we give a nonrigorous, 
physical discussion of why divergences occur and how they may be 
removed by renormalization. We hope that this will convince the reader, 
before going through all the details, that the renormalization subtractions 
are natural and the divergences of the naive expansion are artificial in these 
models. We state our main results in Section 1.5 and then discuss their 
physical interpretation. Finally, we give an overview of the sections con- 
taining the proofs. Every section begins with a brief explanation of what is 
done and how it fits into the general strategy. 

1.2. The Forma l  P e r t u r b a t i o n  Expansion 

The models have the formal functional integral representation 

P(II' fl) = I Dd/ D~ e "~' + ~o.q,l+ ~.~ 

where d =  - ( ~ ,  C-lqs)--21/,  Dqs D~ is the formal 
1-[.,-.~ d$~(x) d~(x) ,  

and 

(1.7) 

measure 

~,(x)(C-l)~,p(x, y) ~bp(y) (1.8) 
=,[3 

V = f  ds(x)ds(x' ) ~ ~=(x)~p(x)O~/j.=,,p,(x,x')~=,(x')q&(x') (1.9) 
:,,#,=',#' 

8--/84/5-6-~__ 
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where now ~ ds(x)F(x) stands for the integral over  the spatial  variable x 
and imaginary  time r, x = (r, x), with an appropr ia te  measure,  e.g., 

ds(x) = dr ddx (1.10) 

for a cont inuous  system on [0, fl] x R d and 

f ds(x)F(x)= f~'dr ~ F ( r , x )  (1.11) 
x E F  

for a lattice system on [0, f l ] x F ,  e.g., F=Z d. Here fl=l/kBT is the 
inverse temperature .  The imaginary  time is introduced to get a functional 
integral representat ion for the trace over  Fock  space in the s tandard  way. 
The connected Green  functions can formally be calculated as derivatives of  
log P with respect to the sources q and i~. 

In this paper,  we consider  the limiting case T =  0, so fl = oo and the 
configurat ion spaces are I~ d+ ~ and ~ • F (e.g., g~ x 71d), respectively. The  
spin index is ~ E { T, ~}, and the interact ion is assumed to be t ranslat ion 
invariant,  so that  

g~,/~,~,/s,(x, x ' )  = v~.~,/~,(r - r ' ,  x - x ' )  (1.12) 

and is short  range, i.e., v decreasing so fast that  its Four ier  t ransform 0 is 
at least twice differentiable (see Assumpt ion  A1 below). Note  that  we do 
not assume that  it is instantaneous.  For  simplicity, we also assume that  it 
is spin-diagonal ,  i.e., v~a.~,/s, = 6~ ,~  m, v. In contras t  to the assumpt ion  abou t  
the decay of  v, the latter a ssumpt ion  is merely for nota t ional  convenience 
and can easily be dropped.  

One m a y  imagine v to arise f rom exchange of  (quasi)part icles like 
pho tons  or phonons  and formalize this by a H u b b a r d - S t r a t o n o v i c h  trans- 
formation,  introducing one or more  scalar fields with covariance v so that  
the interaction vertex is resolved as an exchange of  fields and the interac- 
tion becomes bilinear in the fermion fields. For  the purposes  of  the per tur-  
ba t ion  expansion we shall not  need this. In part icular ,  since we assume 
smoothness  of  0, we shall not  need a cutoff  on the interact ion lines, and we 
shall often draw graphs  with four-legged vertices instead of  ones with inter- 
act ion lines. 

For  the lattice models,  we take 

(C-I)(x,x')=6,qs(c$,,x,(O~,-lt)- Tx_,,,)3(r-r ') (1.13) 

where It is the chemical  potent ial  and T x_ ~, is the ampl i tude for hopping  
f rom site x to site x ' ,  which we assume to the symmetr ic  and short  ranged 
(see Assumpt ions  A2 and A3 on e below). 
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A model of particular interest that is easy to formulate but difficult to 
analyze is the Hubbard model, for which 

T x =  ~ ty~x.y (1.14) 
lyl = 1 

with ty the so-called hopping parameters. In the simplest version of the model, 
t v = t is the same for all y of length one, so the operator T is just the discrete 
l.aplacian on 7/'/, with the diagonal term omitted since it can be absorbed in 
the chemical potential ll, and the interaction term is one-site and spin-diagonal, 

(1.15) 

Various extensions of this model, e.g., with more complicated finite-range 
hopping, have been studied in connection with high-temperature super- 
conductivity. For suitable values of the filling factor, they all fall into the 
class of band structures discussed here. For  a review of mathematically 
rigorous results about the Hubbard model, see ref. 4. 

Formally equivalent to P, but in fact much more convenient is the 
generating functional for connected amputated Green functions 

- 1 
if(O,,, ~b,,) = log ~ f D~b D ~ e-'C~ )'v(~'+r (1.16) 

where the constant Z takes out the field-independent term so that 
~.#(0, 0 ) = 0 .  As written above, i is not a well-defined object in infinite 
volume; it can be made well defined by restricting to a finite volume A or 
by introducing a suitable cutoff. If the free covariance C is bounded and 
any power of it is integrable, (1/IA1) i~j exists and is analytic in 2, as was 
first observed by Caianiello. However, for any realistic model, C will not 
have these properties unless cutoffs are imposed. The radius of convergence 
obtained using naive bounds shrinks to zero when the cutoffs are removed, 
and establishing analyticity uniformly in the cutoffs requires techniques as 
in ref. 5. 

Our analysis is done in momentum space, where from now on momen- 
tum is short for Bloch's quasimomentum, which can be used to label one- 
particle states because of the periodicity of the one-article potential U. In 
infinite volume, momentum space is the first Brillouin zone ~ ,  i.e., the torus 

= Na/F # (1.17) 

where F # is the dual lattice to F, e.g., F # = 2 n Z  a for F =  Zd. In finite 
volume, the momenta are in a finite subset of ~ ,  p = 2naIL with n e 7/`/c~ 
if the volume is a box of side length L. The eigenfunction expansions used 
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to transform into momentum space are discussed briefly in Appendix B for 
the general case; for the purposes of this introduction, we just give the for- 
mulas for the case of a lattice model on Z d, where we can simply do a 
Fourier expansion. The only changes in the general case are (of course) 
that the Brillouin zone will differ with the lattice and that the formulas for 
switching between position and quasimomentum space involve the eigen- 
functions of the one-particle Hamiltonian H o with the periodic potential. 
Under the Fourier transform 

~,(x) = (2n)-~a+ I I f  dap dpo e-ipor + ipx ~(p) 

~(x) = (2x)-,a+ ,, f d"p clpo e ip:- ipx t~(p) 
(1.18) 

the quadratic part of the action becomes 

(~, C- '~)=(2n)-" t+" ~ ddpdpo~(p)(ipo-e(p)) ~(p) (1.19) 

where we have dropped the carets and introduced the band structure 

e(p) = t (p)  - p  (1.20) 

where 

e(p) = I ds(x) e-ipxT x (1.21) 

and, with Pi = ((P,)o, Pl) and 

dpo d"p 
dd+ Ip = dpo dap = ~ (2~) d 

the interaction becomes 

(1.22) 

f 
V= J da+ 'pl ...da+ 'P4(2x) d+ I J((p2 + p4 - Pl - P3)o) 

x J#(P2--Pl  + P4--P3) 

x O(p3--p~) ~(p,)  ~(p:)  ~(p~) ~(P4) 

Here J ~ is the delta function on ~;  more explicitly, 

1 
(~ # - -  i p x  - -  (P)-'27~'" y" e - y .  J(p+y) 

I x ~ Z d  :,,~F # 

(1.23) 

(1.24) 
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where the 6 on the right side denotes that on Nd. In general, the solution 
of the one-particle problem will produce crossing bands. We exclude this 
case here, and we also introduce an ultraviolet cutoff that removes the 
high-energy bands. For the lattice systems, such a cutoff is already built in 
as the lattice spacing; for continuous systems, it is not a real physical 
restriction since high energies do not occur in a crystal. If there are finitely 
many bands that do not cross, the band index is just a bookkeeping device 
dragged along, so, without loss, we restrict to the one-band case here. 

For 2 = 0, the fermions do not influence each other and the model is 
completely characterized by the covariance C, 

-- iPo r + ipx 
C<x) = ~ d a+ ' p  e < 1.25) 

lpo -- e(p) 

in the sense that all 2n-point functions are determinants of matrices with 
elements C(xi  - xa). 

The propagator in momentum space, C ( p ) =  eiPo~ e(p)), has a 
singularity at p 0 = 0  for all p e S ,  where S =  {p: e(p)=0} is the Fermi 
surface of the independent-electron approximation. Although the function 
1/(ip0- e(p)) is in L lo + 5( R x ~ )  for all 6 e [ 0, 1 ), graphs in the perturbation 
expansion diverge because of the singularity on S and because in the 
expansion, arbitrary powers of C are integrated. The numerator e i?0~ is 
included in the standard way since we want to consider the expansion 
around the situation where all states inside the Fermi surface, i.e., those 
with e(p)<0,  are already occupied. 

Expanding ff in a formal power series in 2, we can write 

"~([/]e, ~ e ) =  ~, 2r(~r(~]e, ~e) ( 1 . 2 6 )  
r~>0 

with 

21n / m 2n! 

m ~ 1 oq,...,O~m i =  l i 1 i = n t +  1 

X (G2m.r)~,....,~,,,(p I ..... P2 .... ,) fi O=,(Pi) ~e,(P,,,+i) 
i = 1  

P,) 
(1.27) 

where tile coefficient function G 2 . . . .  is totally antisymmetric in the 
simultaneous exchange of momenta and spin indices (see Section2.3). 
Again, the 6 # is periodic with respect to F # in the spatial part of the 
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momentum. The coefficient G2 .... can be expressed in the usual way as a 
sum over values of connected Feynman diagrams. The sum over m runs 
over a finite index set for each fixed r because the number of vertices is r 
and the graphs are connected with 2m external legs. 

The Feynman graphs are similar to those in quantum electrodynamics: 
there are two types of lines, namely fermion lines (drawn solid), carrying 
a direction, and interaction lines (drawn dashed). The vertices have two 
legs to which fermion lines can be connected (one incoming, one outgoing) 
and one leg for an interaction line. The action determines the assignment 
of propagators  C(p) to fermion lines, ~(p) to interaction lines, and momen-  
tum conservation delta functions to vertices. Equivalently, one can replace 
two vertices that are joined by an interaction line by a single four-fermion 
vertex with exactly two incoming fermion legs and exactly two outgoing 
fermion legs. The graphs then have only four-legged fermion vertices and 
only fermion lines. There is one notable difference between the cases U =  0 
and U:/:0: In the spherical case (U- -0 ) ,  where e ( p ) =  p'-/2m, p~ ~a. The 
corresponding ultraviolet problem (behavior at large IPl) was solved in 
ref. 2. In the presence of a crystal potential (U4: 0), the integrals over the 
spatial part  of the momentum are over the first Brillouin zone M, which is 
a compact  set. Thus there is no case of large p here. Momentum conserva- 
tion at every vertex means conservation in M, as given by 6 # above. If one 
prefers to think of the momenta  in R a, fixing momenta  with ~ # means that 
at every vertex, there remains a sum over y ~ F  #. Although formally 
infinite, this sum always contains only one nonzero term since there is a 
unique y E F  # that translates back a vector in Ed into the fundamental 
domain of the translational group F #. However, it is natural and simpler 
to consider momentum space as the torus .~ since e is F#-periodic.  

For example, in the Hubbard  model, 

d 

e ( p ) = 2 t  ~ c o s p i - l t  (1.28) 
i = l  

is the tight-binding band relation and g(p) = 1. 
The much more general class of models and the range of chemical 

potential/~ that we treat in this paper are given by the following assump- 
tions. 

1.3. Assumptions 

We assume that the one-particle problem (discussed in Appendix B) is 
such that we have a Brillouin zone # which is a d-dimensional torus of 
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type (1.17). We assume that e = e - p  [see (1.20)] is a continuous function 
on ~ and that for some value Po of the chemical potential, the Fermi 
surface 

S =  { p e ~ :  e (p )=0}  (1.29) 

has only a finite number of connected components. Furthermore, there are 
k >: 2 and a neighborhood o,V" of S such that: 

A1 The interaction 0 e C k ( N x , ~ , C ) .  The sup norm over R x ~  of 
the first k derivatives is finite, t3 has the symmetry 0 ( -Po ,  P )=  

V(po, P). 

A2 The band structure eeCk(~,V ", R), and Ve(p) ~ 0  for all p~S.  

The third assumption is a geometrical condition on the Fermi surface. It 
is very simple to understand and is fulfilled for generic surfaces. Let 
I1: S ~  ~,/, ~o ~--~ n(co)= (Ve/[Ve[)(co), be the unit normal to the surface. By 
A2, S is a C k submanifold of ~ ,  and n is a C ~'- ~ unit vector field. If S 
consists of more than one connected component, choose a normal field for 
any component. For ~o, co'eS, define the angle between n(co) and n(~o') 
by 

0(w, ~o') = arccos(n(~o), n(co')) (1.30) 

Let 

~(,o) = {o~' e s: In(co).n(,o')l = I} = {r n(m)= +_n(o')} (1.31) 

and denote the ( d -  1)-dimensional measure of A c S by vo l  d _  I A .  Also, for 
any A c N'~ and f l>  0, denote by Up(A) = {pc  ~d: distance(p, A) <fl} the 
open fl-neighborhood of A. For  fixed e and ~to, we assume: 

A3 There is an open interval .~,# around lto and there are strictly 
positive numbers Zo, Z~, p, flo, and K such that for all p e J / ,  the 
Fermi surface S = S ( l t ) = { p E ; ~ :  e (p )=0}  has the following 
properties: S(p) c At, and for all fl -%< flo and all co e S: 

(i) vol,l_ l(U/j(~(~o)) n S) <~ Zofl ~. 

(ii). If co' r Up(@(co)) c~ S, then 

[sin 0(co, co')[ = [ 1 - (n(r . n(co') ) 2 ] i/2 >>. Z l f f '  

Throughout this paper, A1-A3 will be assumed to hold, and p will be 
assumed to lie in the interval Jr specified in A3. We now explain what 
these assumptions mean. 
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Assumption A1 on ~ is a decay assumption in position space, e.g., for 
an instantaneous interaction V on a lattice system on zd  and k =2 ,  A1 
holds if 

Ix12 IV(x)l < ~ (1.32) 
X E Z d 

For continuous systems, A1 is implied by a similar integral condition. 
Assumption A2 excludes singular points. For example, a point p on S 

where Ve (p )=0  is called a van Hove singularity. 
The condition that e is continuously differentiable is fulfilled for the 

case where e comes from a Schr6dinger equation for the one-body problem 
with a regular periodic potential, if there is no level crossing. Indeed, it is 
real analytic. In lattice models with finite-range hopping, e is analytic. 
However, infinite-range hopping is also allowed: e E C k if the kth moment 
of the hopping amplitude exists, i.e., ~.~ [xl ~ IT.,I < ~ .  

Assumption A3 is, more informally, that for every co e S: 

(i) The set of points co' where the normal n(co') is parallel or 
antiparallel to n(co) has positive codimension x > 0 in S. 

(ii) If co' is not in the set ~(co), where the normal is (anti)parallel to 
n(to), the angle between n(co) and n(co') increases with some 
power of the distance between co' and @(co). 

Thus in order to violate these assumptions, the surface S must have fiat 
regions or subsets where 0(09, co') vanishes exponentially fast as ]co- co'l --* 0. 
To illustrate A3, we show in Fig. 1 an example of a Fermi surface in d =  2 
(i.e., a Fermi curve) on ~ = R2/27rZ "- that satisfies A3. In Fig. 1, the square 

Fig. 1. An example of a Fermi surface obeying Assumption A3. 
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bounds the fundamental region [ - n , / 1 : )  2 for the torus ~,  and the shaded 
areas indicate e(p)< 0. 

Assumptions A2 and A3 imply the following bound, which we shall 
use in the proofs. 

Volume Improvement Estimate. There is e>0  and there is a 
constant Cvol such that  for all it ~ J / a n d  for all r/i > 0, r/2 > 0, r/3 > 0 

where 

12(r/1, r/2, t/3) ~ Cvol/71/72/13 g 

t 
12(111,112,/13) = s u p  m a x  | dapl ddp2 

qE~ Vl.V2E{I.--I} O,.~x.~ 

x l ( le(p~) l  < / I~)  l(le(p,_)l < rl_,) 

x l(le(v,pl + v2p2+q)l <113) 

(1.33) 

(1.34) 

Here I(E) denotes the indicator function of the event E, i.e., I(E) = 1 if E 
is true and I ( E ) =  0 otherwise. The additional factor//3 ~ will be called the 
volume improvement factor. The function 12 allows us to give sharp 
bounds for arbitrary graphs based on a simple characterization of graphs 
(explained below). 

Proposition 1.1. Assumptions A3 and A2 imply (1.33), with 

K 
e>~ (1.35) 

K + p  

Proof. See Appendix A. l 

Assumption A3, and thus (1.33), hold in particular if the set of filled 
states {p: e(p)~lt} is strictly convex and nowhere exponentially flat in the 
sense mentioned above. Thus the class of models with e > 0 contains all 
those where the band structure is a strictly convex analytic function 
or a strictly concave analytic function, because, by definition, the sets 
{p: e(p)~<p} are then strictly convex sets, and the Fermi surface is just the 
boundary of such a set. By analyticity, exponential or complete flatness is 
excluded in this case. This is obviously a very natural condition since essen- 
tially all band structures of practical importance in solid-state models are 
strictly convex around the band minimum, and so our results apply to the 
case where the Fermi edge is just above the minimum of a band. 

The proof we give in the Appendix also shows that this nonnestedness 
is essentially a transversality condition on the Fermi surface and its 
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translates--hence the need to have some control over the set ~(co), which 
is essentially the set where the intersection would not be transversal. 

E x a m p l e s .  1. The spherical band structure e (p )=  p 2 / 2 m - p  fulfills 
all these hypotheses for any It > 0, with p = 1 and x = d -  1. 

2. The Hubbard model with tight-binding band structure (1.28) fulfills 
A1-A3 for all l~ :/:0, i.e., away from half-filling, with ~, '=d-1 .  If the band 
is either empty or full (cases which are of little physical interest), the 
volume shrinks even faster in d~< 2. For the half-filled case it = 0, both A2 
and A3 fail. Assumption A2 is not fulfilled because of the van Hove 
singularities at the boundary of [ - n ,  n] d, and A3 does not hold because 
the surface has flat regions (in d =  2 it is diamond-shaped). This is an example 
where a nongeneric (because flat) surface plays a role in a physical model. 

It is well known that the half-filled band is a very special case, and 
that this is due to the nesting we just discussed, as well as to the presence 
of van Hove singularities. A physical way of understanding this is that the 
particle-hole symmetry restricts the shape of the Fermi surface. More 
generally speaking, van Hove singularities must always occur at some 
values ofl t  for topological reasons: for generic e, the condition Ve(p)= 0 is 
satisfied at isolated points p e ~.  Thus there is a van Hove singularity for 
each value of lt for which the corresponding Fermi surface passes through 
one of these points. By way of contrast, nesting in the sense that A3 fails 
is a much more restrictive condition on e(p). Stated differently, a nesting 
condition requires fine tuning of e. The occurrence of flat parts of S and 
van Hove singularities at the same value of it (it =0,  half-filling) in the 
Hubbard model with the band structure (1.28) is accidential. They no longer 
occur at the same value oflt  if next-to-nearest neighbor hopping is allowed. 

3. For d = 2 ,  S = { ( x , y ) :  x 2 " + y ' - ' = l }  is another example. Here 
p = 2 1 7 - i  and, as in Examples 1 and 2, K = d - - l = l .  As n ~ o o ,  S 
approaches {(x,y):  [ x [ = l  or ly[=l, (x'-+y2)t/2<~x/~ }, which is flat 
away from its edges, and the lower bound for the volume improvement 
exponent e goes to zero like 1/i, by (1.35). 

4. The two-torus imbedded in •3 is an example with p = 1 and ~" = 1. 
The codimension ~" is only 1 in this example because ~(co) may be a union 
of two circles for some ~o. 

5. The surface e-Z/x-'+ e-~/-"2= e -  t is an example where, due to the 
essential singularity at (0, 1), the condition A3 does not hold. As discussed 
above, under some regularity conditions on the one-particle problem, such 
surfaces are ruled out. We may well expect that they will not occur in any 
realistic model. 
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1.4. D ivergences  and H a r t r e e - F o c k  Theory  

Under the assumptions stated above, the only source of divergences in 
perturbation theory is exactly the same as in the spherical case, where e is 
given by e (p)=p- ' /2m- / l ,  namely the accumulation of powers of the 
propagator due to strings of two-legged subdiagrams: the function 
C(p)=( ipo-e (p ) )  -~ is singular on the set {0} • By the assumption 
that Ve does not vanish on S and by compactness of S, we can introduce 
coordinates p---e(p) and co, where co parametrizes the submanifold 
S~,={p:e(p)=p}  (this works in a neighborhood of S = S o ,  i.e., for 
Ipl ~po). Thus p =ok(P, co) in this neighborhood, and for ~ < 2, 

where 

1 
f dpo ddp 
lifo ,,IplU <,,o lipo -- e(p)l = 

f 1 
= dpodp d a- Jco - -  Idet ~b'(p, co)l 

L•o - ,,I <, ,o l i p o  - p l ~ 

= [p,, rdr F(r) (1.36) 
Jo r ~ 

F ( r ) =  dO dd-'r co)l 

The integral converges for ~ < 2, but since F(r)>~fo > 0 for all r, it diverges 
for ~>~2. 

By the Feynman rules, graphs like the ones shown in Fig. 2 diverge, 
because, e.g., the value of the first one would be I dpo ~ dap C(p)3T(p) 2 
~ ( q - p )  for external momentum q, which diverges because the third power 
of the propagator appears, so cc = 3, and 

T(0, q) = Y da+ IPO((O' q) - p) C(p) 

will not vanish on the Fermi surface S where the propagator is singular. 
The proof that these two-legged insertions are the only source of diver- 
gences of values of individual graphs was given in ref. 2 for the spherical 
case, and a similar result holds in the present case (see Section 2.1). The 
only way a divergence could be absent is that the function T(p) also 
vanishes on the Fermi surface. However, this will not happen by itself in 
general. Renormalization is done by subtracting (s  T(0, P(p)) for 
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/ 

/ 

t i i I 

Fig. 2. Graphs with two-legged insertions. 

any two-legged insertion T(p), where P(p) is the projection of the vector 
p onto the Fermi surface S, for p in a fixed neighborhood of S. The precise 
definition of P is given in Section 2.2; it is defined by taking a vector field 
u that is transversal to S in the sense that [(u. Ve)(p)[ >/Uo > 0 for all p E S, 
and taking P(p) to be the point where the integral curve of u through p 
intersects S (see Fig. 3). The reader familiar with resummation methods 
based on the Schwinger-Dyson equations in solid-state theory, e.g., the 
Hartree-Fock method, may ask why one never sees these divergences in 
the integral equations corresponding to these approximations, although 
they are said to resum part of those diagrams which appear to be ill defined 
in the formal perturbation expansion. This point actually gives a hint at 
what renormalization in these models does. Consider the Hartree-Fock 
approximation, c6~ as given by the integral equation for the two-point 
function 

(G2)~,(rl, xl,  r2, x2) = (~'~(rl, xl) ~ , ( r2 ,  x2)) (1.37) 

which reads, denoting x = (3, x), 

G2(x~, x2) = r2(x~, x2) + 2 f ds(x) ds(x') 

x C'(x,, x) v(x'--x) G2(x, x') G2(x', x2) 

t "  

- 2  j ds(x) ds(x') ~(x,, x) Gz(x, x2) v(x' - x) tr G2(x', X t ) 

(l.38) 

where the trace is over spin indices. Representing the free propagator C" by 
a thin solid line, interaction lines by dashed lines, and the interacting 
propagator G2 by a thick line, this equation can be depicted as in Fig. 4, 
from which it is evident that by iterating the equation one produces a 
resummation to all orders that includes graphs without polarization effects, 
in particular some that are divergent in the formal perturbative expansion, 
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e(k) = p~ > 0 

S: e(k) = 0 

e(k) = p~ < 0 

%-d-Tc/c/Pgar 
q / / / ~  integral curve of u 

I / I /  

Fig. 3. The  project ion to the Fermi  surface. 

as for instance the first one in Fig. 2. However, the whole point of the 
"resummation" is to avoid summation, instead making the ansatz 

~ 2 ( P )  ---- e i P ~ 1 7 6  - -  e(p) -- Z(p)) - l  (1.39) 

and rewriting the integral equation in momentum space (in the translation- 
invariant case) as 

13(q P) eipo o+ 
Z ( q )  = -- 2 f d a+ Ip 

ipo -- e(p) - Z'(p) . /  

+ 20(0) tr f d a+ lp eip~176 ipo -- e(p) -- Z ( p )  (1.40) 

For a reasonable function Z, the singularity of 02 is again integrable by 
the argument of (1.36). However, 02 will be singular if p o = 0  and 
e(p)+Z(0,  p )=0 ,  rather than if p0=0,  e(p)=0,  so S is not the Fermi 
surface of the interacting system. If one attempted to seek the solution of 
(1.40) by an expansion of Z in powers of 2 and exchanged summation and 

�9 
D ----- p + P , �9 + --- --- " -- 

Fig. 4. T he  H a r t r e e - F o c k  equat ions .  
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integrals, one would run into divergent expressions for well-defined integrals, 
such as 

7 .  

f d'l+'P ~'(P)- " = "  ,,~= o f dU+'P (ipo-e(P)) p)'' (1.41) 

These divergences are part of those of the unrenormalized perturbation 
expansion. 

The conclusion of this discussion is that in fact not the subtractions 
but the divergences are artificial, because they come from expanding a 
moving singularity in terms of a fixed one, and that the counterterms that 
are added to the action to implement renormalization have something to 
do with Z(0, p). This is the main idea; it remains to be shown that this is 
really so for the exact theory, where there is no such simple integral 
equation for the self-energy Z as (1.40) for the Hartree-Fock approxima- 
tion. For instance, the Hartree-Fock resummation does not include any 
polarization effects and thus differs from the exact result already in second 
order. It is necessary to include those effects for renormalization, e.g., the 
second graph in Fig. 2 also contributes a formally divergent term to ~2 and 
thus needs to the renormalized. The Hartree-Fock graphs will, however, 
turn out to be spcial in that they are the only two-legged graphs that are 
nonoverlapping to all scales. Also, the graphs contributing to the (one- 
particle-irreducible) Hartree-Fock self-energy have the property that the exter- 
nal momentum can always be routed through an interaction line. Thus the 
degree of differentiability of the Hartree-Fock approximation to Z, as 
defined by (1.40), with respect to the external momentum is the same as that 
of the interaction ~. For the exact self-energy Z, the answer is not so easy. 

In the four-legged case, the nonoverlapping graphs, i.e., those without 
improved power counting, will turn out to be the ladder graphs that are 
known to produce symmetry breakingJ 3'5~ We will give an explicit bound 
that shows that only insertions of these four-legged diagrams can produce 
the factorials in the values of individual graphs. The concept of improved 
power counting, together with this result, makes precise the notion of lead- 
ing divergences (see Section 2.7). 

The subtractions are implemented by adding counterterms to the action. 
These counterterms are of mass type, that is, they are bilinear in the fermion 
fields. If both the band structure and the potential have spherical sym- 
metry, any two-legged diagram contributes a value T(po, p)=  T(po, Jp]) to 
the two-point function, i.e., spherical symmetry forces the function only to 
depend on Ipl. Thus the subtracted terms are simply constants since 

T(0, P(p) )=  T(0, [P(p)[) = T(0, ~ )  (1.42) 
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for the spherical band structure e(p)=p2/2m-lc Their sum produces a 
shift in the chemical potential t21 and the interpretation of renormalization 
in that case is that the interaction changes the radius of the Fermi sphere. 
In the case where the original band structure or the potential does not have 
spherical symmetry, T(0, P(p)) is still a function of the spatial part of 
momentum. This is easy to understand since in that case the shape of the 
Fermi surface may change, but technically it is a complication because, in 
renormalization group language, there is not only one relevant parameter, 
but instead there are infinitely many, needed to describe the shape of the 
surface. To cancel the divergences, the counterterms are chosen such that 
the interacting Fermi surface is held fixed. They determine the shift between 
the noninteracting and the interacting Fermi surface and thus include part 
of the effects of the self-energy. 

1.5.  R e s u l t s  

The long-distance behavior of the free electron Green function 
C(x-y) is a power-law falloff in [x-yl, determined by the singularity of 
C(p) in momentum space. If one cuts off this singularity, i.e., forbids small 
values of the energy e(p), the Green function decays exponentially, with a 
decay length ~ 1/energy. We do a multiscale analysis by decomposing into 
energy shells and successively integrating out fields in those energy shells. 
This gives rise to a series of effective actions, which can also be viewed as 
the Green functions with an infrared cutoff given by the energy scale. Let 
M > 1 be a scale parameter (see Section 2.1 ), and j e 7/, j < 0. The shell of 
scale j around the Fermi surface is the set of p for which MJ-2<~ 
lipo-e(p)l<,MJ. We consider an infrared cutoff on scale M',  where 
I > - c o ,  I e Z, I < 0 (see Section 2.1 ). We also call I the infrared cutoff. Let 
J /  be the interval given in Assumption A3 and fix It e ./r Define the con- 
nected amputated renormalized 2m-point Green functions G~,,, with infared 
cutoff I as the formal power series 

3C 

I r / G2,,, - ~ (1.43) - -  2 G 2 , . ,  ,. 
2 = 1  

1 where G2 ..... is the renormalized rth-order Green function [see (2.72)]. 
Without going into the details, it is the modification of the connected 
Green function in (1.27) where only the fields with energy scale />M' are 
integrated over, and the interaction contains an additional term K '  that 
modifies the band structure. The term "renormalized" refers to this 
modification since in the graphical analysis, K ~ appears as the counter- 
terms. We also introduce an ultraviolet cutoff that removes the higher 
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bands. The  G~,, are analytic in 2 for I >  - o o ,  and we will show that  the 
limit I - - ,  - o o ,  G2 ..... of  G~ .... exists, so that  in that  limit (1.43) becomes a 
well-defined formal power  series. Fo r  s 1> 0 and functions F: R x N x 
{T, .L} --* C define the norms  

I F l , =  ~ sup max  10*'G,,,(p)I 

where cr = (% ..... eta) e 7/'/+ ~ is a mult i index with cq >/0 

Z ~ o  ~i, and 

",,opt/ 

for all 

(1.44) 

i, I=l  = 

Similarly, for functions u defined on (R x ~ )  ' ' -~  x {]',~}", define 

lul.,. = sup { 
Oq . . . . ,  ~ t  n _ I 

l ad  + . - .  + l a , , - n l - < s  

where 

and 

) 
P,, 

( 1.45 ) 

= \ O p , /  " \ o ~ , , _ , /  

[U['=fr215 dd+lpt...dd+lp,,_ I AE{T,t}"max luA(p~ ..... P , , - l ) [  (1.46) 

r I The self-energy ~VI=~'r>~12  Z r is given as a formal  power  series by 

X'(p) = ( 1 -- O~ Cl) - '  G~(p) (1.47) 

where CI is the p r o p a g a t o r  with infrared cutoff  I [ the  inverse relation is 
G I = ~ I (  l - -  C l ~ , '  ) --13. 

T h e o r e m  1.2. There  is a formal power  series 

K I ( p )  = ~ K~(p) 2 ~ ( 1 . 4 8 )  
r = l  

such that  for the interact ion 

~/r = 2 V +  f d d+ 'p ~ (p )  KZ(p) ~,(p) (1.49) 
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the following statements hold. For all m ~ [~, the infrared limit I---, - ~  of 
the G~ ..... exists. More precisely, for every r>~ 1, there are XrE C~(~ x ~ ,  C) 
and K r E C ~ ( ~ ,  R)  and for all m~> 1, there are G~ .... such that, as I ~  - ~ :  

(i) G~.r ~ G~_.,. in [.[o. 
I (ii) G 2 ..... ~ G2,,,.,. converges in [-['. 

(iii) L'~r~s in [.[~ and ( { Z ) ( p ) = Z ' ( 0 ,  P ( p ) ) = 0 .  

(iv) K ~ K , . i n  [-]~. 

Moreover, the Green functions are locally Borel summable, that is, there 
are constants F2, K2, a2, and F2,, such that 

]G2.~10 ~< F~. r! 

IK,.I ~ ~< ~c~;. r! 
(1.50) 

[z,.I, ~< G~. , '! 

IG2,,.,.I' ~< F~,,,. r! 

Thus, to all orders in ~., the Green functions of the model with one- 
particle band structure e + K can be calculated in renormalized perturba- 
tion theory, and they are given by almost-everywhere finite functions of the 
independent external momenta (the momentum conservation delta function 
is already taken out). The self-energy is a continuously differentiable func- 
tion of Po and p; the counterterms Kr are finite and continuously differen- 
tiable in p. The counterterms K~ are constructed recursively in r ("order by 
order in the expansion in s  from (2.76); the diagrams that contribute are 
of self-energy type. Since the amputated function G,_ is first order in ~., i.e., 
the free propagator is subtracted from the two-point function before 
amputating to get G2, the unamputated connected two-point function 
indeed tends to ( i p o - e ( p ) - ~ ( p ) )  -~ in the limit I-~ - o o .  Thus X is the 
usual (Dyson) self-energy. Because _r(0, p ) =  ( f Z ) ( p ) =  0 for all p~ & the 
interacting model with one-particle band structure e + K  has the same 
Fermi surface at the given value p of the chemical potential as the free 
model with band structure e. In other words, the effect of renormalization 
is indeed that the interacting Fermi surface is kept fixed. This is a much 
more delicate.condition than in the spherical case, where the function K 
reduces to a constant, i.e., a shift &z in the chemical potential. 

The infrared limit of the renormalized expansion gives the same con- 
vergent Green functions if we choose a finite volume and positive tem- 
perature, and the same conclusions hold with functions that have a limit as 
the volume tends to infinity and/or the temperature goes to zero. The point 
of the renormalization in finite volume and at finite temperature, where 

822/84/5-6-23 
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there are no divergences in the loop integrals, is to rearrange the expansion 
in a way that uniformity in volume and temperature and convergence of 
the expansion coefficients for the Green functions in the thermodynamic 
and zero-temperature limit is achieved. Of course, by the above discussion, 
this rearrangement amounts precisely to keeping track of how the Fermi 
surface moves when the interaction is turned on. 

If the bound for the coefficients (1.50) is saturated, the renormalized 
expansion has convergence radius zero, which in itself may not seem a very 
useful statement. However, if one is willing to go to a slightly more techni- 
cal level and consider the representation of the Green functions as sums 
over values of Feynman graphs, the renormalization method also yields 
much more precise and detailed statements about when and why the series 
diverges. It is a well-known fact in renormalizable field theories that the 
only source of factorial growth of individual diagrams is the marginal scale 
behavior of insertions of four-legged subdiagrams. In this paper we show 
the stronger statement that if there are no ladder subdiagrams, the values 
of all graphs are bounded without the r factorial, i.e., we specify the set of 
those four-legged diagrams that can really produce factorials much more 
precisely. The meaning of the statement that in a given graph there are no 
ladder subdiagrams is defined in Section 2.5: they are the graphs that 
contain no four-legged nonoverlapping subdiagrams to any scale. This 
statement is useful because the structure of these of these graphs is given 
explicitly in Section 2.4. The four-legged nonoverlapping diagrams are 
ladder diagrams, also called bubble chains, where the fermion lines may be 
dressed with Hartree-Fock-type corrections. However, any vertex correc- 
tions or polarization subdiagrams make the graphs overlapping and its 
scale sum convergent instead of marginally divergent. The detailed bound 
is stated and discussed in Section 2.7; it also depends on the tree decom- 
position of the graph. A short version is as follows. 

Theorem 1.3. Let G be a graph contributing to G 2 . . . . . .  and denote 
by V(G) the norm of the scale sum of Val(GJ), where J is any labeling of 
G, and the norm depends on the number of external legs, as in 
Theorem 1.2. If for any labeling J, G s does not contain any nonoverlapping 
four-legged subdiagrams at any scale, then V(G)<~ V~,, where V,,, is a 
constant independent of r. 

In other words, Theorem 1.3 means that a single graph in the nth 
order of perturbation theory can have value ,--17! only if it contains ladder 
subdiagrams. All other four-legged insertions do not produce any factorials 
in the value of single graphs. This suggests that only insertions of ladder 
diagrams can change the behavior of the correlations, i.e., the properties of 
the ground state, qualitatively, and that all other corrections are analytic 
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in the coupling. A nonperturbative proof  of this requires control over the 
sum of all graphs, hence an implementation of the Pauli principle, which 
has been done in d =  2 spatial dimensions) 5~ 

In the case of a strictly convex Fermi surface, only the behavior at 
transfer momentum zero can lead to factorials in the values of individual 
graphs, because at all other values of the momentum, the surface intersects 
transversally with its translate or at least there is a curvature effect that 
implies the absence of a singularity. In the spherical case the existence of 
a singularity at zero transfer momentum has been shown to be responsible 
tbr the occurrence of off-diagonal long-range order in the ground state/3"5~ 
If the Fermi surface is transversal to its negative, the ladder graphs are 
nonsingular and analyticity in 2 holds in infinite volume, tT~ 

The classification of graphs into overlapping and nonoverlapping ones 
that will be introduced in Section 2.4 may seem technical at first; it is, 
however, natural since the graphs that are nonoverlapping to all scales are 
the dressed ladder graphs in the four-legged case and the Hartree-Fock 
graphs in the two-legged case. The four-legged nonoverlapping graphs are 
the only ones that do not show improved power counting behavior, and in 
this sense their resummation is a resummation of the "leading divergences." 

Note, however, that Theorem 1.3 is a statement about the behavior of 
values of single graphs, and does not require any resummation. Therefore 
it holds irrespective of the sign of the coupling (on which the existence of 
solutions to the gap equations from resummation depends). Also, it holds 
for the general class of nonflat Fermi surfaces given by our Assumptions 
A1-A3, and not just for strictly convex Fermi surfaces. 

It is technically necessary to do an expansion with a fixed interacting 
Fermi surface, to prevent the problems described above when one expands 
a moving singularity in terms of a fixed one. In order to construct a model 
with a given one-particle band structure and to see how the Fermi surface 
moves under the interaction, and also to clarify the relation between the 
counterterm function K and the self-energy, we have to study the map 
e ~ E = e + K further and show that it is invertible. To invert this map, one 
would like to take a derivative of K with respect to e. It is not obvious that 
such a derivative exists since K is a functional of e obtained by integrating 
factors of 1/(ipo-e(p)), and taking a derivative produces a square of the 
denominator, "and thus potentially a singularity, since the square of the 
propagator is not locally integrable. However, the volume improvement 
bounds allow us to take this derivative. The latter is also necessary to get 
information about the dependence on the chemical potential p, since the 
expansion has so far been done at a fixed value of/z, which then fixes the 
Fermi surface. Different values of p give rise to different Fermi surfaces, 
and in the case without spherical symmetry, different also means of different 
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shape. The renormalization would be useless if it worked only pointwise in 
it. In other words, it is important to establish some continuity properties in 
it. We show that the counterterms and thus the self-energy and the value 
of any graph are continuously differentiable in/t. More generally, we prove 
that this C j property holds for derivatives with respect to e, i.e., we allow 
for much more general variations of the band structure than just a shift by 
a constant. Let 

cO , + c~h) O,,K~(e, h) = ~ K~(e (1.51) 
= 0  

be the directional derivative of K~ with in direction h. 

T h e o r e m  1.4. If Assumptions A1-A3 hold, then limz . . . .  D;,K~(e, h) 
exists for all r >/1 and 

I lim DhK~(e, h)lo~<Const(r) Ihlo (1.52) 

Corollary 1.5. If Assumptions A1-A3 hold, then the counterterms 
K are continuously differentiable functions of the chemical potential a. 

To convert this statement about directional derivatives into one about 
derivatives as bounded linear operators Is~ and to consider varying e, not 
just /~, we have to be more specific about the set of allowed e's. Let 
~5 # ,/V c ~ be open. For k ~> 0, denote the Banach spaces (Ck(,~, R), l" Ik) 
by ~k and (Ck(~U, R), I'lk) by ~k~. For 1 < t r y < d - l ,  g 2 > g o > 0 ,  and 
g3 > 0 let 

~42( ~ oU, go, g2, g3) 

= {e e (82,-: le]2 <g_,, S(e)= {p ~d~: e(p)=0} =JV', 

[Ve(p)[ > go for all p ~ Jr', and n: S(e) ~ S d, 

Ve 
co ~ n(co) = l~e [  (co) satisfies: for all co ~ S, 

rank dn(co) ~> cr, and all nonzero eigenvalues m 

ofdn satisfy [m[ > g 3 t  (1.53) 

Here Sd= { a ~ d :  [a[ = 1}, and dn is the derivative of n with respect to 
o~ ~ S. In other words, dn is the derivative of n tangential to the surface S 
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[note that dn(co) is a quadratic matrix since the dimension of S(e) is d -  1, 
and n(co) ~ Sa]. Let L- a be the space of bounded linear operators from ~2~,- 
to (go .. 

T h e o r e m  1.6. Let l ~ < a ~ < d - 1  and gz>go>O.  Then d =  
,cA_(a, Jlr, go, g2) is open in ~ v .  For all e ~ ' ,  Assumptions A2 and A3 
hold, with x = a  and p = l .  For all e ~ '  and all r~>l,  DhK~(e,h)= 

I t  I t  (K,.) (e)h with (K,.) (e) ~ 5f, and there is K ' ~ L P  such that 

II(Kf)'(e)-K;.llu,--,O as I---* -- oo (1.54) 

The function K,.: ~ '  --* (go is differentiable in e, and its derivative is given . l  

by K ' s S a .  The map e~K',.(e) is continuous on ,_~/, and there is C r > 0  
such that for all h s ~'2,. 

IK;.(e)hlo <~ C~ Ihlo (1.55) 

C~ is independent of e ~ J .  
The bound (1.55) is the most subtle result of this paper. Note that no 

derivative acts on h on the right side of (1.55). Because of that, K',. extends 
uniquely to a bounded linear operator on ego and we can prove the 
lbllowing. 

T h e o r e m  1.7. Let R >~ 1, 2 ~ R, and for e e ~ ' ,  let 

R 
( R )  E), (e) = e + ~, MK,(e) 

If 
R 

cr I~lr< 1 (1.56) 
r = l  

then E~, m is injective on every convex subset of ~ ' .  That  is, if el,  e2~o~' 
with E(R~Ie,)-E~R)Ce,~ and if ( 1 - s ) e l + s e ,  eo~' for all s ~ [ 0 ,  1], then 
e I = e  2 .  

Since .~' is open, the maximal ball around any e ~ zr is such a convex 
subset. Thus E). R) is locally injective. The significance of Theorem 1.7 for 
the problem of self-consistent renormalization is discussed in the next section. 

The set d of Theorem 1.6 is more restricted than the set of all e 
satisfying Assumption A3. It comprises the case of a strictly convex Fermi 
surface, or that of a torus or a cylinder, but, e.g., not Example 3 of Sec- 
tion 1.3. More generally, the specification of a set of e for which dn(co) may 
vanish for some 09 on S, but for which the exponent p/> 1 is still uniform 
in e, requires the existence of more derivatives ( k > 2 )  of e. This can be 
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formulated, but for conciseness, we restricted consideration to the simplest 
case here. The reader may construct his or her own generalizations; the 
essential requirement is that the constants u o (defined in Section 2) and the 
volume improvement exponent e must be uniform on the set. The reason 
we gave A3 as a separate assumption is that it is more general and can be 
checked without trouble in examples; for instance, it is easy to see that for 
Example 3, e(p) = Pl" + P~_" - t  t, there is an open p-interval with the desired 
properties, and this already suffices to prove Theorems 1.2-1.5. 

Finally, we define the Hart ree-Fock aproximation as the sum over all 
graphs that are nonoverlapping on all scales; equivalently, these are the 
graphs produced by iterating the Hart ree-Fock integral equation (1.40). 
This resummation also defines a map e w-, e + H, where H represents the 
counterterms in the Hartree-Fock approximation. 

Th e or e m 1.8. The map e ~ e + H is invertible in every fixed order 
in perturbation theory. 

This theorem is easy to prove; we shall discuss its motivation in the 
next section. 

1.6. D iscuss ion  

The interpretation of renormalization is thus: the unrenormalized 
Green functions diverge because it is wrong to assume that both the band 
structure and the Fermi surface stay fixed when the interaction 2V is 
turned on. In reality, they respond to the interaction--if  the surface is fixed, 
the band structure changes, and vice versa (this is similar to the situation 
in KAM theory, where the frequencies and actions of quasiperiodic orbits 
cannot both stay fixed under a perturbation). To do the expansion, we 
prefer not to let the Fermi surface move, since the moving of the singularity 
produces the divergences discussed above. Instead we allow for a change in 
the band structure e. The function K(p) contains the terms that are 
necessary to prevent the surface from moving under the perturbation. 
This function depends on the vector field u which we used to define the 
projection onto the Fermi surface. The dependence on u amounts to a 
reparametrization of the Fermi surface and has no physical consequences. 

It has long been known in solid-state theory that self-energy effects 
have to be taken into account to avoid divergences in perturbation theory. 
In many accounts this is described as self-consistent renormalization, with 
the idea that if the free two-point function is expressed in terms of the exact 
two-point function everywhere, two-legged insertions disappear, since 
they arose from self-energy terms. This procedure is usually called "self- 
consistent" renormalization and described in words in the literature. Often, 
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one then goes on to describe particular approximations, such as the Hartree-  
Fock approximation. Since none of these approximations is exact, none of 
them removes all the divergences, and one point of our analysis is that we 
give a clear procedure how to do this to all orders in perturbation theory: 
the divergences are removed by fixing the Fermi surface. Self-consistent 
renormalization is then achieved by inversion, i.e., solving the equation 

E = e + K ( e ,  2) (1.57) 

for e in terms of a given E. It is really a separate step. Once this is done, 
the combination of renormalization and inversion allows one to determine 
how the Fermi surface moves when the band structure is fixed. 

Obviously, the solution of (1.57) requires some knowledge of the 
regularity properties of the map K, which is a map between function spaces. 
We have established enough regularity to show that M + K  is locally 
injective. In other words, we have proven that for any interacting band 
structure, there is locally at most one bare band structure that has the same 
Fermi surface, i.e., uniqueness of the solution. The existence (surjectivity) 
proof requires more detailed bounds and more stringent assumptions and 
will appear in a sequel paper. 

Note that this regularity problem does not just arise because we use 
counterterms to do the expansion correctly. Any attempt to "consider only 
skeleton graphs first and then replace the free propagator by the interacting 
one on all lines" also requires the inversion of the map e ~ e + Z, and the 
regularity problem is thus similar to ours (only harder, since Z also 
depends on Po). In brief, in any way of looking at the system, there is the 
question of how regular the self-energy, and thus the interacting Fermi 
surface, is. In the heuristic discussion after (1.40) that motivated why the 
divergences are artificial, this question was postposed by the assumption 
that Z is "reasonable", so that (1.36) can be used to show well-definedness 
of the left side of ( 1.41 ). However, Z is not a function one is free to choose 
or make assumptions about. It is determined by the iteration, and therefore 
its regularity has to be proven. We have proven that Z and K are C' 
(Theorem 1.2). Inverting (1.57) requires at least K e C  2. The proof of this 
will appear in another paper. 

Regularity of the Hartree-Fock approximation to Z (Theorem 1.8) is 
easily shown: it is obvious that the external momentum can be routed through 
an interaction line in every Hart ree-Fock graph, so the Hart ree-Fock self- 
energy has the same regularity properties as the interaction potential. 

Since improved power counting plays a central role in the technical 
analysis done here and since the facts on which it is based are not specific 
to our multiscale analysis and therefore have wider applications, we 
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Fig. 5. 

(a) (b) (c) 

(a) A shell around the Fermi surface, (b) transversal intersection with a translate, 
and (c) nontransversal intersection with a translate. 

describe briefly how it comes about. A way to understand power counting 
is to weight the growth of the propagator in the vicinity of its singularity 
S against the smallness of the volume of shells around the Fermi surface, 
where it becomes large. We use a scale decomposition where momentum 
space is cut into shells around the Fermi surface, as sketched in Fig. 5a. It 
is easy to see that the p-volume of a shell in which (say) 2 j -  ~ ~< [e(p)[ ~< 2 j 
( j < 0 )  is bounded by a constant times 2 j (see also Section 2.1). It is also 
easy to deduce the integrability properties of C that we discussed above by 
weighting this volume against the growth of[C[ in a summation over shells: 

Ii @o I 
o,o-,.(p)t<in liPo-e(p)l ~ 

l (2J- I  < lipo- e(p)l < 2 j) 
= Z ~ dpo ; dp 

j<o . ]ipo-e(p)P 
9J 

~. 2('-J)~I- jdpo ~ dpl(2J- '<[e(p)[~2 j) 
j<O ---  "~ 

const �9 2 ~ ~ 2 -J~. 2 ./. 2 j 
j<O 

= c o n s t . 2  ~ ~ 2 j(2-~l (1.58) 
j<O 

which converges if cr < 2. Up to this point, this is just a rewriting of (1.36). 
However, the geometry of these shells has important consequences for non- 
trivial graphs, which we discuss now. 

Beyond lowest order, the momentum assignments in graphs with at 
least two lines consist of linear combinations of the loop momenta with the 
external momenta, e.g., p and p + q, where p is a loop momentum. On scale 
j, both p and p + q must be in a shall of thickness 2 j around S. The volume 
of the full shell is of order 2 j. On the other hand, for most values of q e ~ ,  
the intersection of S and _+ S + q will be transversal. Thus the support of 
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the integrand will have a volume which is much smaller, roughly by a fac- 
tor 2 j, since the volume is no longer that of an entire shell, but that of a 
transversal intersection of two shells around S (see Fig. 5b). However, for 
those values of q where the intersection of the shell with its translate by q 
is not transversal, e.g., for q = 0, or the translation shown in Fig. 5c, there 
is no gain at all, i.e., there is no uniformity in q. The improved power coun- 
ting bound is based on the observation that if there is no nesting in the 
sense that A3 holds, then the set of q for which the intersection is not trans- 
versal has small volume itself. So, if q = k + Q, where k is another loop 
momentum, and if there was no gain in the integration over p, k must be 
in a set of small volume. This restriction produces an additional "volume 
improvement factor" 2 ~j in the second loop integration over k (this also 
applies to the surface drawn in Fig. 5). Thus, in the double integral over p 
and k that appears in (1.34), there will always be an improvment factor 2 ~j, 
which is uniform in Q. Therefore, Q may be an arbitrary combination of 
loop momenta and external momenta, and it is not necessary to keep track 
of all complications of the momentum flow in general graphs to extract the 
improvement factor. It is only necessary to find out which graphs have this 
volume gain, i.e., contain a factor I2 as a subintegral. Obviously, they must 
have at least two loops, but the above condition that q = k + Q  with 
another loop momentum k means also that there must be a fermion line in 
which two loop momenta flow (the two loop momenta p and k flow in the 
line with momentum p + q = p + k + Q ) .  This is now a purely graph- 
theoretic question. The class of graphs for which such a line exists is 
precisely that of overlapping graphs defined in Section 2.4. The nonover- 
lapping graphs are classified explicitly in the two- and four-legged cases (it 
is not hard to generalize the characterizations given in Section 2.4 to 
graphs with more that four external legs, but we do not need that here). 
The volume improvement bound (1.33) is proven under the hypotheses A2 
and A3 in Appendix A by the argument outlined above. 

Note that the above transversality and no-nesting arguments require 
d/> 2. In d = 1, improved power counting is absent. This is one reason why 
one-dimensional many-fermion models behave differently from the higher 
dimensional ones. 

The proofs in Section 2.4 are elementary and independent of the scale 
decomposition. Indeed, the only property of the model that is used in Sec- 
tion 2.4 is that all vertices have an even incidence number, which is true in 
our class of models since the interaction is a four-fermion interaction (see 
also Fig. 4 in Section 2.4). For vertices with an odd incidence number, a 
similar classification can be done. 

The implementation of these graphical statements for the volume gains 
in the problem with the full scale structure is done in Sections 2.5 and 2.6 
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and used thereafter to prove the stated theorems. Some of these proofs are 
not short, but they are in principle an application of the simple ideas stated 
above. 

2. RENORMALIZATION AND CONVERGENCE 

In this section, we set up the renormalization flow and define the 
localization operator that is used to subtract the value of two-legged 
diagrams on the Fermi surface. We then develop one of the main technical 
tools, the graph structure lemmas that are used to extract volume improve- 
ment factors systematically for any labeled graph. We use this to show an 
improved power counting bound, and then show that the renormalized 
Green functions converge in every order in perturbation theory, and that 
the only four-legged graphs which do not obey improved power counting 
are the ladder graphs. 

We start with some elementary remarks that follows from the assump- 
tions. By A2, S is a compact ( d -  1)-dimensional Ck-submanifold o f ~ .  Let 

U,7(S ) = {p: 3q ~ Swith  [ P - q l  <r/} (2.1) 

Then there is 0 such that Go=sup{IVe(p)l: p~U_,~(S)} is finite, and 
such that go=inf{IVe(p)l: p e  U2~(S)} >0.  Let u be a vector field on a 
neighborhood Us(S) of S. We call u transversal to S if there is uo > 0 such 
that for all p~S ,  Ve(p)-u(p)~>Uo>0. Denote the integral curve of u 
passing through p ~ S  by )~p, that is, yp: ( - t o ,  t o ) ~  # ,  t ~--~ yp(t), yp(0)=p,  
and for all t ~ ( - t o ,  to), (O/Ot) yp(t) = u(yp(t)). 

kemma 2.1. Assume A2. 

(i) There is a C ~' vector field u transversal to 5', and there is t o > 0  
such that ~: S • ( - t o, to) --" ~(S  • ( - to, to)) c ~ ,  defined by ~U(p, t) = y p(t), 
is a Ck-diffeomorphism. 

(ii) There are 0 > 0 and uo ~ (0, 1 ) such that U2~(S) c ~u(S • ( - t o ,  to)), 
and such that for all q ~ U2~(S): 0 <go/2  <~ Uo <~ Ve(q). u(q) <~ Go. 

(iii) Define the functions r: U2~(S) ~ ~ and P: U2~(S) -~ S as follows. 
For q ~ U2,~(S) 

(P(q), r ( q ) )=  ~u- ~(q) (2.2) 

In other words, yp(q)(Z'(q))= q. Then 

~ 'r{q) 

q = P(q) + /./(~p(q)(/)) dt (2.3) 
~0 
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so I q - P ( q ) l  ~< Iv(q)[ and 

1 
l q - P ( q ) l  ~<~ [e(q)l (2.4) 

b/o 

Furthermore, Uo ~< e(q)/r(q) ~< G o. 

(iv) Let p e U,~(S), p =e(p) ,  and co = P(p). The map X: P~-* (P, co) is 
a Ck-diffeomorphism from Us(S) to a subset of R x S. Denoting its inverse 
map by p(p, co), there are constants A o and A~ such that the Jacobian 
J(p, co) = det p'(p, co) obeys 

1 
sup IJ(p, co)l <<.~Ao (2.5) 

p �9 U61S) l'lo 

and its derivative OJ obeys 

1 
sup 10J(p, co) l~<~A, (2.6) 

p E U,~(S�91 ~l~ 

Ao depends on J, Uo, and lult ; A ~ also depends on the second derivative of u. 

Proos (i, ii) We show that u ~ C a transversal to S exists even if e is 
only C ~. For  p ~ U6o(S), let n(p) = Ve(p)/[Ve(p)[; then n is continuous in p. 
So for all p ~ S  there is r ( p ) > 0  such that n ( p ) . n ( p ' ) > l / 2  for all 
p'~ Uz,.Ip~(p). Since S is compact, the covering (U,.~p~(P))p~s contains a 
finite subcovering by Vi= U,.Ip, l(pi), i~{1 ..... n}, and there is 6 > 0  such 
that U36(S) ~ U'i'= i V~. Now, U3a(S) c ~  is open, hence a C ~ submanifold 
of ~.  Choose a C ':~- parttion of unity (X;)~ that is subordinate to the cover 
Vi n U36(S) and that obeys supp Xgc Ur~p,l(p i) for all i. Define 

u(p) = ~ Z,(P)n(p~) (2.7) 
i = l  

Then us  C~(U3~(S), Na), and by construction ofx i ,  

. u(p). Ve(p) = ~ X;(P) IVe(p)l n(p,)- n(p) 
i: p E Urtpi)( Pi ) 

Part (i) is now obvious since S in a Ck-submanifold of ~ ,  and (ii) is 
clear by construction of u. 
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(iii) Equation (2.3) holds by definition of the map ~Uand that of the 
integral curve y. It obviously implies 

I q - P ( q ) l  ~< U()'p(ql(t)) ~< Ir(q)t o(q) dt  (2.9) 

since ]u] ~< 1. If e(q)>~0, then r(q)~>0 and, since e(P(q)) =0,  

e(q) = f[~q ) d e(y p(q)(t)) dt 

f"q '  (u. Ve)(),piq)(t)) dt>~Uor(q)>~u o ] q -  P(q)] (2.10) =J0 
The case e(q).N< 0 is similar. 

(iv) The map is a diffeomorphism because it is the composition of 
with the inverse of (m, r) ~ (co, p) = (co, e( g/(m, ~))) and because 

0p 
~rr (o), r) = (Ve. u)( ~g(m, r)) (2.11 ) 

so that Op/Or>>.u o in ~-I(U~(S)) .  This also implies the bounds for the 
Jacobian and its derivative. ] 

R e m a r k  2.2. The choice u = Ve/[Ve[ has most of the above proper- 
ties, with Uo = go, but it is only C k-  ~ if e is C k, and then the maps ~v and 
Z are only C k- l .  In particular, with this choice of u, finiteness of A I 
requires k t> 3 in A2. 

2.1. Scale Decomposition and Power Counting 

Let e be as in A3, Uo and 5 as in Lemma2.1, and M > m a x { 4  t/~, 
1/(Uo6)}. Then ]e(p)] ~<M -I implies p e  U,~(S). Let aeC':'~(R~, [0, 1]) be 
such that 

{01 for x~<M-4  
a ( x ) =  for x>~M -2 (2.12) 

and a'(x) > 0  for all x e ( M  -4, M-z ) .  Set 

I 
O if x <~ M - 4  

a( x ) if M - 4  <~ x <. M - 2 

f ( x ) = a ( x ) - a ( x / M 2 ) = l l o - a ( x / M ' - )  ifif x~>lM-2<~x~l 
(2.13) 
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so that, for all x > 0, f(x)>1 0 and 

- I  
1- -a (x ) - -  ~ f (M-2Jx) (2.14) 

Calling f j ( x ) = f ( M - ' - J x ) ,  we have 

and for all x ~> 0, 

supp f j  = [ M  2j-4, M 2J] (2.15) 

fj(x) fj,(x)=O if IJ-J'l /> 2 (2.16) 

Defining 

we decompose 

f (  M - 2j Ix + iyl z) = f  j( Ix + iyl 2) C/x, y)= 
ix - y ix - y 

(2.17) 

eim~ -eip~176176 + e(p)2) + eiP~176 Y'. Cy(po, e(p)) 
ipo-e(p) ipo-e(p) j<o 

(2.18) 

For the purpose of the present paper, we discard the ultraviolet end of the 
model by removing the first term in this sum, in other words, taking 
( 1 - a ) / ( i p o - e ( p ) )  as propagator. The infrared singularity, which is the 
physically relevant feature of the problem, is unchanged. 

L e m m a  2.3. For all j < 0 :  

(i) I Cjlo ~< M -j+'-. More precisely, for all p = (Po, P), 

ICj(po, e(p))l ~< M-J+21(lipo-e(p)l ~ [M j-2, MJ])  (2.19) 

(ii) Let Ao be as in Lemma 2.1 and A =max{ l, 2Ao~sdco}. Then 

and 

A 
dap l(]e(p)l ~<11) ~<--q (2.20) 

UO 

ICjl'=I~ dpodp ICj(po, e(p))l <~2AM2Mj (2.21) 
x.~ U 0 
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In particular, taking 

we have 

2AM 2 
K o - - -  (2.22) 

L/0 

IGIo ~<KoM-J and IGI' ~< KoM./. 

(iii) For any multiindex c~ with s =  10d ~<k, there is a constant IV,. 
depending on lel.,, and M such that 

ID~Cj(Po, e(p))[ ~< W,.M -~'+ ''j l ( l i po -  e(p)l e [ M  j-- ' ,  MJ])  (2.23) 

The proof of this lemma is easy; we leave it as an exercise to the 
reader. This lemma implies that for any 0 > I > - ~ ,  any power of the 
propagator ~j~>~Cz is integrable and so values of connected graphs 
evaluated according to the above Feynman rules, but with this cutoff 
propagator instead of 1/(ipo-e(p)), are finite, and C ~ in Po and e. 

The bounds given in the lemma are similar to those in the spherical 
case, 12'3~ and so the power counting is the same as in Lemma III.1 of ref. 3. 
The dimension 6s / [see ref. 3, Eq. (III.5)] is 51= 1. 

We now state the analogue of the abstract power counting lemma of 
ref. 3. For the moment, we refer the reader to ref. 3 for details about labeled 
graphs and the associated trees; they will be explained in more detail in 
Section 2.3. Let G be a connected graph with an even number E of external 
lines, and two- and four-legged vertices. Let L(G) be the set of internal 
lines of G and J: L ( G ) ~  {zeT/: 0>=>~I},  l~--*jl be a labeling of G, which 
assigns a scale to each line of G. Construct the tree t = t(G ~) associated to 
the labeled graph G "I as followsJ 3~ The forks f of the tree are the connected 
components G J of all the subgraphs {le  L(GS): jl>>,h} with h ~< - 1. The f 
subgraphs are partially ordered by inclusion to form t(GS). The scale of a 
fork is defined by 

. i t= m i n { j / / e  L(G{) } 

Define, in analogy to Eqs. (II1.9) and (III.10) of ref. 3, 

Dr= IL(G~)I- 2(I U G~)I- 1) 

Af = - �89 1: l internal line of G J, / external line of G~(}[ 

A,, = - �89 1: / internal line of G J, v e/} I 

(2.24) 
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where V(G) is the set of vertices of G. The value of the graph G s is defined 
a s  

f#(Pout--Pin)  Val(GJ) = Z f l-[ dd+'ptCj,(Pt) fi~,,~,I 
spins  c< j ~ L ( G )  

x ]-[ 6#(Poat.,,-pin,,,)(ql,,)4,.,...=,.,,,(q,, ) 
v ~  P~(G) 

x 1-[ " #  6 (Pout.,,-Pin.v) O,,(q,,) (2.25) 
v ~  V2(G) 

where L(G) is the set of internal lines of G, V4(G) is the set of four-legged 
vertices of G and V2(G) is the set of two-legged vertices of G, O(q,.) is the 
function associated to a two-legged vertex v, '~1 is the vertex function 
associated to a four-legged vertex v, and the momenta  q,, are given in terms 
of external and loop momenta  by the momentum conservation at every 
vertex. The spin indices on a line / and a vertex v are the same if I goes into 
v or out of v, and the symbol sum over spins indicates that they are 
summed over. 

L e m m a  2.4. Let Ko be as in Lemma 2.3. Then 

and 

I Va l (G" ) lo  <~ (4Ko) IL'c'~t ]-[ IO,.Io 1-[ I~z,,Io M &'-/' 
~'~ V2(G) I '~ I/'4161 

x I- I  MUr-J'rO~ (2.26) 
. f>q~  

I VaI (GJ) I  ' <<. (4Ko) I/-I~ 1-[ (IOvlo M -j"'''') 
t,~ V2tG) 

x l-[ I~ siotS/:extS,..,,x, (2.27) 
~'~ V4(G) 

where [.l ' is defined in (1.46), 

Sint = I - [  MDf(j/-J'fl) (2.28) 
f > q~. i n t e rna l  

where the product is only over those forks of t(G s) such that G s does not 
f 

contain any external vertices, and 

Sf.ext = [-[ MaI(Js-J"'m (2.29) 
. f >  ~k, ex te rna l  



1244 Feldman e t  al. 

where the product is over those forks f of t(G J) such that G J contains an 
f 

external vertex of G, and 

S ..... t = 1-I M'J"(~ (2.30) 
v, external 

where the product is over those vertices of G to which an external leg is 
joined, g(v) is the highest fork such that G r contains v and g ( f )  is the 
predecessor fork o f f ,  that is, the fork of t(G J) immediately below f. 

Proof See ref. 3. An improvement of (2.26) will be shown in 
Section 2.6. I 

Remark 2.5. By definition, 

D r = ( 2  I V4( G/)I + I V2( G/), - - ~ )  - 2( I V4( Gr)l + l V2( Gr), - l ) 

1 
= ~ (4 - E r )  - I V2(G/)I (2.31) 

If the graph G has no two-legged vertices, and if no internal subgraph G X 
(i.e., Gf. contains no external vertices) has E r = 2 ,  then A,~<--1/2 and 
Af ~< - 1/2, and 

D r =  �89 -- Er) ~< 0 (2.32) 

for all internal forks, so the scale sum Zg [VaI(GJ)[ ', where J runs over all 
labelings of G compatible with a fixed tree t, (2'3} will be finite. This is the 
rigorous counterpart of the remark in the Introduction that only insertions 
of two-legged diagrams give rise to divergences. Renormalization will be 
done by subtracting the value of the two-legged subgraphs on the Fermi 
surface. For this we need to introduce a projection onto the Fermi surface. 

2.2. Localization Operator 

The localization operator implements the projection onto the Fermi 
surface for functions defined on • x ~ ,  and it is used to define the subtrac- 
tions needed for renormalization. This projection can be defined in various 
ways, and so the localization operator is not uniquely determined. In the 
spherically symmetric case, there is exactly one choice that is rotationally 
invariant. Moreover, it does not matter which projection is chosen because 
rotational invariance implies that the value of any two-legged diagram 
T(p0, p) depends only on Po and ]p[. In the case without spherical sym- 
metry, there is no such independence and hence no canonical choice of the 
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projection, although the geometrically most natural one seems to be that 
which projects along integral curves of Ve. We project p onto S differently, 
by moving it along the integral curve of the fixed vector field u transversal 
to S (see Lemma 2.1). This yields bounds in better norms than using Ve 
(see Remark 2.2) because Ve~ C k-' ,  but u may be chosen in C ~. 

Defini t ion 2.6. Let ~ be as in Lemma 2.1 and let X E C'~-(~, [0, 1 ]) 
obey X(x)= 1 for .\'s Ua(S) and X ( x ) = 0  for xr  U2a(S). Let P be as in 
Lemma 2.1(iii). For functions T: IR x ~ --+ .g, X any linear space, define 

(~T)(qo, q ) =  {O (0' P(q))x(q)  ifotherwise q ~ U2~(S) (2.33) 

If T~ CP(R x ~ ,  X), then ~T~ cq(~, X), where q = min{k, p}. 

I_emma 2.7. Let ~ , , = u .  V be the Lie derivative with respect to u, 
and T be differentiable on I~ x U~(S) with a bounded derivative. In terms 
of the coordinates (p, co) introduced in Lemma 2.1, 

({T)(qo, q(p, co)) = T(0, q(0, co)) (2.34) 

O--p T(q~ q(p' co)= \ ~,,eJ (qo, q(P, co)) (2.35) 

In particular, ~,,P = 0 and 

c~,,s <~ls~ = 0 (2.36) 

For all q = (qo, q) ~ R x Ua(S), 

1(1 - g )  T(q)l ~ v/~ liqo-e(q)[ max{10oT[o, IVZlo} (2.37) 
U0 

Proof. By the chain rule 

L T(qo, q(p, co))= VT(qo, q(p, co)) - -~  (p, co) 
Op 

0 
= VT(qo, q(p, co)) - b--~p 7,,.(r(p)) 

Or 
= VT(qo, q(p, co)). u(q(p, co)) ~pp (p) 

So (2.35) follows from (2.11 ). ~,, P = 0 then follows immediately from (2.35) 
with T(q o, q) = P(q). In other words, because the projection P(q(p, co)) =co 

822/84/'5-6-24 
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is constant along the integral curves of u, and the Lie derivative ~ .  is a 
directional derivative tangent to these integral curves, we have ~,,P = O. If 
q e Ua(S), z(q)= 1, so 

and 

(~,,dT)(qo, q) = (u. V) T(0, P(q)) = (~,,P. VT)(O, P(q)) = 0 (2.38) 

I(1 - s  T(q)l = I T(qo, q ) -  T(0, P(q))l 

~< Iq01" 100TIo + I q - P ( q ) l .  IVTI0 (2.39) 

so (2.37) holds by Lemma2.1(iii). II 

To put the localization operation into contact with the flow of effective 
actions, we define its action on a linear subspace of the Grassmann algebra 
given by "connected" polynomials of even degree. To define this subspace, 
we introduce some notation. The fermions in our model carry an index 
~=(~ ,  Po, P), where ~ {1", ~}, poeR,  and p e . ~  for infinite volume and 
zero temperature. For temperature T >  0, Po ~ (27/+ 1) nT. For a periodic 
box of side L, p e ~  n (2n/L) 7/d. For ~ = (~, Po, P) we denote ff(~) := 
~'~(Po, P) and similarly for ~. We also write X =  { T, ~} x R x ~ and 

(and their obvious variations b r  T> 0 or finite volume). 

Definition 2.8. We say that Q e ~ ,  k iff Q=(Q2  .... ) . ,~0.r~,  where 
for a l l r / > l  andm/>O: 

(i) Q2 ..... : X 2 " ' - ' x { T , l } - ' + C ,  

(~I ..... ~2m--1, O(2m)~ Q2 . . . .  (~1 ..... ~2m-- 1, Of'2m) 

is C k and all derivatives up to order k are bounded uniformly on 
X2"'-I x {T, 1}. 

(ii) For all r~>l, there is rh(r)>~O such that for all m>.N(r) ,  
Q2 ..... = 0. 

(iii) Qz .... is antisymmetric under permutations of momenta and 
spins, i.e., d Q 2  ..... = Q._, .... where d is the following operation. Define 
P2,, = ((P-',,)o, P2m) e R x ~ by 

m - -  I 

P2,, = ~. (P , - -Pm+,)+P, ,  (2.40) 
i = l  
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and define ~2., = (e2.,, P2, . ) '  Then 

sCQ(~, ..... ~_~.,-i, ~,,,) 

1 
= (m!) z ~ sign(ha) 

~ z . a ~  P e r m ( m )  

x Q ( ~ l l  ..... ~al.,i, r ..... r (2.41) 

(iv) The polynomial in the Grassmann algebra associated to Q~ ~ 
is the formal power series in 2 

r s " ) Q(~, 5)= l~r ~. I-[ ds(r ~# (p,--p,+,,,) 
r = I m = 0 X ~ n  i = i l 

(fi x Qz.,.,-(~l .... ~2. , - t ,  %,) ,~(~,,,+i) t,b(~i) 
i 1 

(2.42) 

Every fixed order in 2 is a polynomial in the Grassmann variables. For 
convenience of notation, we somtimes write t~r~ (,, ~1~ ~ - I - . . a m , a m +  t - . . . a~n  P ' I  , ' " ,  P 2 m  - -  1 ) 

for Q,_,,,.r(~t .... ~2, , - , ,  0%,). In this notation, the quadratic ( m =  1) term in 
Q(r ~) is given by the formal power series 

r =  I ~ t l .~  2 

D e f i n i t i o n  2.9. The localization operator t': k 0 k ,. --* ~,. is defined as 
follows. For Q E ~k and all r >/1 

({ 'Q)z , . . r  = 0 if m/> 2 

(g'Q)2.~((al, Pl), a2) = Qz.,.((oh, (0, P(Pl)), a2) (2.43) 

( tQ)o,r  = Qo.r 

In other words, for Q(O, t~) given by (2.42), 

( s 1 6 2  ~ 2" Qo.~+ da+'P~,(P) Ol~' (o p(p))r ~ 1  oc2 ~ v ~  
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2.3. Flow of Effective Actions 

We review briefly the definition of effective actions and their flow, as 
given, e.g., in ref. 3. We introduce a cutoff that regulates the fermion 
propagator by restricting its support away from the Fermi surface, so that 
the formally divergent integrals discussed above are convergent as long as 
the cutoff is present. This can also be done in finite volume and the infrared 
cutoff can be removed before taking the volume to infinity. The flow is used 
to study the dependence of the Green functions on the cutoff as the latter 
varies. The propagator is decomposed linearly into a sum of slice propa- 
gators that are supported in thin shells around the Fermi surface. Because 
the decomposition is linear, the flow has a semigroup structure that allows 
one to view the Green functions as effective interactions where the fields 
with momenta that are away from the Fermi surface by an amount given 
by the cutoff are integrated out. Let IE  Z, I <  0, be the infrared cutoff and 
decompose the cutoff propagator 

c =  Z cj (2.44) 
--I>~j>~I 

Define ~ ;  by 

~.~;,z.i,- 1 f dpc(~, ~) e r '*+z '~+z '  (2.45) 
e - Z---t 

where dpc denotes the Gaussian measure, i.e., the linear functional on the 
Grassmann algebra generated by the ~9 and ~ defined to vanish for odd 
monomials and determined by its values for even monomials, which are 

f dpc( 0, ~) fi O~,(xi) ~pj(y,)=det( C~,pj(x,, Yj))l ~ i . j 6 n  
i = l  

(2.46) 

In our case C~p(x, y)=6~#C'(x-y), so, using the Fourier expansion (1.18), 
we get in momentum space (in the sense of distributions) 

f dpc(qJ, ~) fl O~,(P,) ~ ( /~; )  = det(6~,~j ~(p,- ~j) C(p,)) o. 
i = l  

(2.47) 

where 

C(p) = ~ Cj(po, e(p)) (2.48) 
--l>~j>~l 
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~ -  is the generating functional for connected, amputated Green functions 
with infrared cutoff I and vertices given by "U, because, formally, a shift in 
the integration variables, 

1 
aj; (X, )~) = - (,~, C-'Z) + log E I d'u c(qJ' 5) 

x exp[ -(t~, C - ' X ) - ( y  ,, C-~VJ)+f'(~b, t~)] (2.49) 

indicates that C-tX and ~C-~ appear as source terms. The effect of the 
C-~ is that propagators associated to external lines are removed. This is, 
by definition, the procedure to get Green functions that are amputated by 
the free propagator. 

The unrenormalized expansion has Y~" being the bare interaction. For 
the renormalized expansion we will allow "// to depend on I because the 
counterterms will be I dependent. The factor 

Z I = f dflc(VI, ~)  e"(~"~' (2.50) 

ensures that ~ ( 0 ,  O) = O. We now define precisely the fluctuation integrals 
used for the flow. 

D e f i n i t i o n  2.10. (i) Let ~//e~A, k. and the covariance C be a 
bounded integrable C k function on R x # .  Define 

1 
~(C, ql)(Z,~)=log{(c, ql-----~Id~tc(~,~)e~'~+z'~+~' (2.51) 

where ~(C, ~ ' ) =  I dpc( ~k, ~)eCt(~'ff) so that ~(C, ql)(O, 0)=0 .  Also, define 

~(C, ~Z)(X,~)=~(C,~b)(X,g)--(~b(X, 2)--~U(O,O)) (2.52) 

(ii) Let G be a connected graph with 17 vertices v~ ..... v,, and 2m exter- 
nal legs such that every vertex vi has m; ingoing and m i outgoing legs 
(incidence number 2mi), and let 

% :  x ' - " - '  x {T, J,} ~ e 
(2.53) 

(~1 .... ~2mi--l, OC2mi) ~ qlt, i(~, ..... ~2mi--  I , (X2n,i) 

satisfy (i) and (iii) of Definition 2.8. Let J: L(G)  ~ {zeZ: z<0} be a label- 
ing of G. The value of G J is defined as the function Val(GS)(C, og,,, ..... q4,,,): 
X'-"'- ' x { T, ~ } ~ C, determined by 
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C5# (qi--q,.+i) Val(G~)(C, allv, . . . . .  al/o,, ) ( / / 1  . . . . .  / / 2 m - -  I , f l 2 m )  
i I 

= ~'. f H (CJ~((P,)o,e(P,))=,.~,da+'P,) 
spins  I ~ L (  G ) 

,, ( ,,,i ,~(i) ~'~ x FI a # \ E= (P'/i--,'m+ W 
i = l  /: 1 

X ~[ui((p~ i), ~{i / ))  ..... { n ( i )  (i) (i) .F 2mi--1' OC2mi--1)' OC2mi) (2.54) 
(#) 

where rh=(qi ,  fli), and ~,pins means that all % are summed over {T, $}. 
If the line I joins the outgoing leg k of vertex v; to the incoming leg k' of 

ul 0~/=c~/,'l, and the momenta p~il=p~(' l=pl.  vv, then 0 9 = o c , ,  

(iii) The set of all connected graphs with 2m external legs and with 
n vertices v, ..... v,, where v; has n h incoming and m~ outgoing legs (incidence 
number 2m A is denoted by Gr(n, m; m~ ..... m,,). When n = I, the graphs are 
required to have at least one internal particle line. 

k e m m a  2.11.  (i) Val(GJ)(C, all,,, ..... all,,,) is well defined and a C k 
function of the external momenta. 

(ii) # and .~' are well-defined formal power series in 2. They map ~ 
to .~ .  

(iii) Expanding in powers of all, 

~- _1 #" ' (C j ,  (al/, all,..., all)) (2.55) eIc j ,~r  Y, ,,! 
/1= I 

(all appears n times), and expanding the #l,,i in 2 and the fields as well, 
# has the expansion [see also Definition 2.8, (iv)] 

~. th(r) f 2 m  

#(Cj, all)(X,~)= 2r • H cls(,h) 
r = l  n l = l  i = 1  

X~# (qi--q,,,+i) (X(Ill.-) Z(YIk +,,,)) 
i I k = l  

x E j , 2  . . . . .  ( a l b ) ( t / i  . . . . .  t /2  . . . .  , ,  #,_,,,) (2.56) 

where r/k = (qk, ilk), and the kernels Ez2 ..... are the following sum of values 
of Feynman diagrams: 

1 r(") ca~l all) Ej,2 ..... (all) = 17! ~.i,2 ..... , . . . . . .  
# 1 ~  ] 

(2.57) 
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with 

E)."~,.,.( r ..... #l,,,,)(~1, ..... f12.,) 

L L 
rl , . . . ,rn >1 1 m l , . . . ,  m n  >I I G E G r ( n , m ; m l  , . . . ,ran) 

r I -b . . .  + r n = r  

x sign(G) d V a I ( G I J } ) ( C ,  qi,,,.r, ..... ql,,..r~)(rl I ..... fl~_.,) (2.58) 

Here J denotes the antisymmetrization operator defined in (2.41), 
sign(G)~ { 1 , - 1 }  is a sign factor determined by the structure of G, (j) 
denotes the l a b e l i n g j / = j  for all l, and ~?/~k.~k denotes the coefficient of order 
rk in the formal expansion of ~//Vk in powers of 2. The sum over the number 
of effective interaction vertices n in (2.57) is a finite sum with n ~<r. The 
sums in (2.58) are finite because the interaction ~/~.~k and in particular 
satisfies (ii) of Definition 2.8. 

Remark 2.12. Although lengthy, (2.58) is easy to interpret: At 
every scale, the Green function is expanded in a formal power series in 2. 
In every order in 2, the functional is expanded in powers of the external 
(unintegrated) fields X and ~. The term with m factors of X and m factors 
of 2T contributes to the 2m-point function, and is given by the sum over all 
connected Feynman diagrams with 2m external legs, built from the effective 
vertices ~b. 

P r o o f .  The momentum conservation delta functions at every vertex 
can provide a set of loop momenta using some choice of a spanning tree 
for G in the standard way. Since G is connected, only the global momen- 
tum conservation delta function remains. It is then obvious by the proper- 
ties of the integrand to see that the function that multiplies this delta func- 
tion is C k and so (i) follows. Since (ii) follows from (iii) and (i), it suffices 
to show (iii). Although this is quite standard, we briefly describe how the 
expansion in Feynman graphs comes about, since it is also very simple. By 
definition, o ~{') takes out the terms proportional to ~l~,~...~ so it is 
obviously linear in every $i~, k. Inserting the expansion for every 0g ~ . ~ ,  we 
obtain the sum over the re and mi. Note that by definition of ~ k ~,., all sums 
over ri start at 1 and therefore ~ and ~ contain no zeroth-order terms in 
2. Furthermore, rn i ~<,3i(ri), so all sums contain only finitely many terms. 
The rules for Gaussian integration (2.47) then join outgoing (t~) legs of ql,, 
to ingoing (qJ) legs of q/v,. The result can be translated into a sum over 
Feynman graphs by joining v and v' by a line and using the definition of 
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the value of a graph given above. Since the logarithm is taken, only con- 
nected graphs contribute (see, e.g., ref. 9). Consequently 

n~(r)~< max ~ [mi(r~)-  1 ] I 
u, r l , . . . , r n  >~ 1 i =  1 

r l  + " -  + r n = r  

R e m a r k  2.13. In fact, because of the fermionic nature of the fields, 
o k  defining suitable norms on 2~, analyticity holds in a disk { I2I < 2o}, where 

2 0 depends on the cutoff L Since we consider the formal expansion only, we 
do not need to make use of that here. 

The flow is now obtained by successively integrating out the momenta 
of shells around the Fermi surface. Since C is a sum of covariances, the 
Gaussian measure factorizes into a product I-If='~d/tc r and ~ can be 
written as the endpoint of the sequence 

- - I  

(2.59) 

The sequence starts with ~ ,~o = ~ and may be obtained by iteration of 

The recursion can be summed to get, assuming Y"(0, 0)--0. 

(2.60) 

~ / ( Z ,  ,~) = "/"(X, ,~) + ~ &(Ci, ~7.~ ,)(X, X) (2.61) 
- - I  ~ i ~ j  

Lemma 2.11 implies the following result. 

L e m m a  2.14. Let e ~ Ck(,~, R), k >/1, and assume A2. If the initial 
interaction ?~ ~ ~,k, then for any scale j, ~ -  ~ 22~. 

Taking the initial interaction to be the bare one, ~r = 2V, yields the 
sequence of unrenormalized effective actions which diverges as I ~  - o o  for 
the reasons discussed in the Introduction. 

The renormalized Green functions are constructed by modifying the 
interaction such that the Fermi surface of the interacting system, that is, 
the singular surface of the interacting fermion propagator, stays fixed. This 
requires a specific choice of ~/'" which we denote as ~ ,  the I indicating the 
dependence on the infrared cutoff. Using the similar notation 
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for the ~. obtained from this interaction by (2.59), we require, as a condi- 
tion on f#~, 

SO 

l <~ i <~ - - I  

{f#~= - Y" {6"(Ci, fq~+ ,) (2.63) 
l<~i-< 1 

Since all f9~ are functionals of (#~, this is not a definition but an equation 
to the solved by ff~. There are further conditions on f#~" We want the form 
of the interaction to be similar to the original one. Only terms bilinear in 
the fermion fields shall be generated: 

(1-~) ~r (1 - l ) , ~ v = , ~ v  (2.64) 

(2.63) can be solved order by order in 2, that is, as a formal power series 
in 2, 

fq~= ~ ~ . , .2  r (2.65) 
r = l  

as follows. All ff~ are formal power series in 2, with no zeroth-order term, 
since they are connected Green functions (and since the free part is subtrac- 
ted from the two-point function). One proceeds inductively in r, the order 
in 2, in (2.63). To get the left side in order r, only counterterms in fr up 
to order r -  1 are needed on the right side of the equation. No graph con- 
tributing to the right-hand side of (2.63) can consist of a single two-legged 
vertex with no internal lines. The left side of (2.63) can simply be used to 
give a recursive definition for the counterterms. 

Definition 2.15. The generating functional for the renormalized 
Green functions is obtained by the flow (2.61) with initial interaction 
ff~= 2V+ .~f/, where V is the interaction given by (1.23) and the counter- 
terms S z are defined as a formal power series in 2 by 

.:/,"'(z,g) -L" E g(c,, ' = aj,+ ,)(Z, X) (2.66) 

and we shall call their formal power series expansion in terms of 2 the 
renormalized perturbation expansion. The expansion coefficients of fqt 
given by Definition2.8(iv) are the renormalized, amputated, connected 
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Green functions. More explicitly, the r th-order 2m-point function on scale 
j>>, I, G~2,,,.,., is obtained by replacing the g(Cj,  ~l) by 

and the Ej.~,,,. by GJ,2,,,.,. in (2.56) and the functions G~ .... from Section 1.5 
are defined as 

6~,,.,. = GI. 2 .... (2.67) 

The counterterms are of the form 

J{'t(X, Z) = ~. fR • ~ da+ 'p Z=(P) Kt(p) Z=(P) (2.68) 

where K ~ is a formal power series in 2, 

K'(p) = ~ 2"K~(p) (2.69) 
r=l 

The Gj~.2,,,,. are all of order r>~ 1 in the coupling 2. In particular, the two- 
point function has the zeroth-order propagator subtracted. Hence the 
formula (1.47) for the self-energy. The recursion formula (2.60) can be 
written for the kernels G ~ as 

I -- I . . . . .  - oj+ , . _ , , , , . , . -  g , , , , , , . ( % + ,  ) (2.70) 

To show convergence of the renormalized Green functions in the limit as 
the cutoff I is removed, I--+ - o o ,  it is convenient to arrange (2.61) in the 
form 

f f ~ = 2 V +  ~ (1 - { ' )  g'(Ci, ~ (+ , )  + ~ ( - # ) g ( C i ,  f#~+,) (2.71) 
i>~j i < j  

Iteration of this equation for (r generates a tree structure, corresponding 
to layers of ~ .  Expanding this out to scale zero, one recovers the scaled 
graph G J from Lemma 2.4. For the unrenormalized expansion, the scales of 
lines in Gr' are strictly higher than those in Gr i f f '  > f  on the tree. In case 
of the renormalized expansion, this holds for r-forks, generated by the 
second term in (2.71). The third term in (2.71) gives to the c-forks of the 
tree. The scales of a c-fork f are summed from I to J~.n since i<<.j in 
the third term of (2.71). 

The semigroup structure of the renormalization flow is obvious from 
the way it is defined by fluctuation integrals. It is a consequence of the 
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linear decomposition of the covariance C into a sum of CTs. It allows one 
to interpret the formula for ~ in various ways, By definition, ~ is the 
amputated connected Green function with infrared cutoff j. Alternatively, 
one can also view ~+1 as an effective action, i.e., the G~+l.2, , are vertex 
functions of effective interaction vertices with 2m external legs. These ver- 
tices are connected by C;lines to form the effective action on scale j, ~.. 
The process of expanding different parts of the tree, or equivalently, 
expanding the effective vertices in terms of higher scale objects, can be done 
to various degrees. One can choose to iterate selected parts of the tree, i.e., 
resolve selected vertices up to a certain higher scale or "trim the tree" at a 
fork f by regarding the subgraph G J : as a vertex with E(G~) external lines 
and vertex factor 6#(pcou~-ps:i ,)Val(G~). We shall make use of three 
variations on this theme, which we now briefly describe. 

R e m a r k  2.16. (i) Resolve every vertex up to scale zero, as 
described above; this gives sums over values of the standard labeled graphs 
G J of Lemma 2.4. More precisely, this leads to the following formula for 
the amputated connected Green functions: 

' - l-m~ ~', Val(G J) (2.72) 2 Z 1-I ,v! 
j>~l t f~ i t  J ~ J ( , j )  

where [as follows from (2.56), (2.57); see also Section VI of ref. 2] the 
second sum is over all planar trees t with r leaves. The root is denoted ~b, 
and for each fork f, n:>~ 1 is the number of upward branches. (l~r= 1 is 
possible because we do not use normal ordering). The factorial is that from 
(2.56). The sum over graphs G runs over all G compatible with t, that is, 
connected graphs with 2m external legs, r ordered vertices, constructed 
according to the Feynman rules of the model. The leaves of t correspond 
to the four-legged interaction vertices of G. For any fork f ~  t, there is a 
connected subgraph 6;: of G, such that the quotient graph (~({f}) 
[obtained by replacing all Gg with ~ r (g )= f  by effective vertices] has n i 
vertices. The set J ( t , j )  of scale families J consists of all (Jir)l~, ordered 
according to the partial ordering given by the tree t, 

j ( t ,  j) =.{ (J)).r~, :Jo =J ;  if f 6  t is not a c-fork, jir6 {j, ,f ,  + 1 ..... 0}; 

i f f i s  a c-fork, j r~  { L..., J-,i,} } (2.73) 

This definition is understood recursively, i.e., the root scale j ,  is fixed to j; 
i f f  is a c-fork with n ( f )  =~b, then J.r runs from 1 to j , .  If n ( f )  =q~, but f 
is not a c-fork, ]c runs from j ,  + 1 to 0. This assignment of scales is now 
continued upward on the tree, determining the range of j). in terms of J~.:) 
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and the r/c label on the fork. All leaves b of the tree t have scale zero, and 
the vertices of G associated to them are the interaction vertices of the 
original action. The labeling of the graph G, l~---*jt, is: all lines l in (~({f}) 
get scale j / =  j.'r. Finally, Val(G J) is defined according to the Feynman rules 
for labeled graphs, with a propagator of scale j~ associated to each line l. 
In our case, there is no hard/soft labeling for the lines because we do not 
use normal ordering. 

(ii) Resolve everything except for one-particle irreducible (1PI) two- 
and four-legged insertions. More algorithmically, let G be a graph con- 
tributing to ~.. For every vertex v, J//,, is again the sum of values of graphs 
on scale >~j+ 1. If v has ~<4 legs and is IPI leave it. Otherwise repeat the 
same procedure for the graph whose value is q/,,. Continue to resolve until 
all graphs that are not resolved are 1PI (for details, see Section 2.7). The 
result is a labeled graph G' that has no nontrivial one-particle irreducible 
two- or four-legged subdiagrams, but instead two- and four-legged vertices 
with scale-dependent vertex functions. This will be used to trace back the 
factorials in values of individual graphs (the reason for their occurrence are 
the nonoverlapping four-legged subgraphs) and to order the inductive 
proofs, since the scale-dependent vertex functions are themselves values of 
subgraphs of lower order. The vertices are scale dependent because the 
trimming procedure splits the summation over J .  Trimming a tree t at a 
fork ~b decomposes t into two subtrees tl and t2 with ff as a leaf of t~ and 
~b the root of t2. Then 

J (  t, j )  = {(jr)f~, : J, = (Jf)f~,, e ~-r = J ( t l ,  J) 

and J2 = (-~r)f~ ,,_ ~ 0"r = Pc(t- ", Jq,)} (2.74) 

The vertex function ~,,. V,,. of the vertex w in G' that corresponds to G~ is 
one scale J0, and it is obtained by summing over the scales in J2, keeping 
those in f~ fixed, 

VC, J~ v,,.= y, ~/(a~;) (2.75) 
J2 E ,,r 

The projection ~,.~ {t, 1 - E ,  1} is given by the r/c labeling of the forks 
of t. 

(iii) Resolve according to families of nonoverlapping subtrees rooted 
at forks belonging to two-legged diagrams; this will play a major technical 
role in the estimates of the derivative with respect to the band structure e. 
For  details, see Section 2.5. 
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For further reference, we give the formula for K~ explicitly, 

KIt(P) = - [ I  n.r! ~ VallGJ)(O, P(p)) (2.76) 
" . j = l  t ~  .[EI J~ ,y ( t . j~  

Note that K~ actually only depends on P(p) ~ S. The sum over G is over all 
two-legged and one-particle irreducible (1PI) graphs G with r interaction 
vertices. The graphs have to be 1PI since e (P(p) )=0  implies Cj(0, 0 ) = 0 ,  
and since the value of a 1 P-reducible two-legged graph would contain such 
a factor. Note also that K~(p)E ~ for all p by AI. This follows from (2.66) 
and a change of integration variables ~b(po, p) ---, ~( -Po,  P) in the functional 
integral defining ~. 

2.4. Nonoverlapping Graphs 

In this section, we give an explicit characterization of two- and four- 
legged graphs that do not contain any overlapping loops. These graphs 
turn out to be dressed bubbles in the four-legged case and graphs of the 
type encountered in the Hartree-Fock resummation in the two-legged case. 

To make contact with the graph structure in our problem, and for 
convenience of the reader, we shown explicitly how certain low-order 
diagrams look when the interaction lines are collapsed to four-fermion 
vertices; see Fig. 6. Graphs 1, 5, and 6 each contains two loops which do 
not overlap. The last three graphs each contains two loops that do overlap. 

We wish to single out those graphs which have overlapping loops. Their 
value contains a volume integral that can be bounded by the function 12, 
defined in (3.4), which gives an additional convergence factor in scale sums. 
This will serve to show that derivatives converge and that a large class of 
4-forks is actually not marginal, that is, that the power counting behaviour 
Dr=  0 is not saturated. For the graphs without overlapping loops, there is 
no such improvement. But these graphs have a rather special structure (see 
Fig. 6). In particular, the momentum of the external line will not enter in any 
of the loop lines if the graph is two-legged and nonoverlapping. The two 
lemmas in this section characterize graphs G that have no overlapping loops 
explicitly for E ( G )=2  or 4. They are stated for the more general class of 
graphs that arise naturally when expanding the fluctuation integral for the 
effective action at some scale [see (2.54) and below it]. 

In the following, let G be a connected graph constructed from particle 
lines and generalized vertices v that all have an even incidence number 
E,, >/2. Such graphs occur naturally in the flow of effective actions. We call 
G one-particle irreducible (1PI) if any internal particle line of G can be cut 
without disconnecting the graph. We also use L(G) for the set of all inter- 
nal lines of G, E(G) for the set of external lines of G, V(G) for the set of 
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Replacement of interaction lines by vertices. 

all vertices, and Vk(G) for the set o f  all vertices with incidence number  k. 
For  v E V(G), G - v  denotes  the graph in which v and all lines go ing  into 
v are deleted. For  IEL(G) ,  G - l  denotes  the graph in which only  the line 
l is removed (but not  its endpoints) .  D e n o t e  the set o f  directed lines o f  G 
by s162 

~q~(G) = {(/, v, w) EL(G)  x V(G) • V ( G ) : / c o n n e c t s  v and w} 

D e f i n i t i o n  2 .17.  (i) Let hi ,  17 2 e No, n~ ~< n 2. A path P in G is a map 
P: {nl ..... n2) -* s  n ~-* (/,,, v,,, w,),  such that for all n E {hi,..., 17_,- 1 }, 
w,, = v, ,+l ,  and such that each vertex o f  G is visited at most  once  by P. 

(ii) A loop  in G is a map  P: {0  ..... s} - - * ~ ( G )  such that P[{o ........ -11 
is a path, and [ in  the nota t ion  o f  ( i ) ] ,  w,. = Vo, and the line from vs to w,. 
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(a) (b) 

Fig. 7. (a) A self-intersecting walk, (b) a self-contraction. 

is a line of G (the case s = 0 is a line from a vertex to itself, also called "self- 
contraction"). 

(iii) The trace O(P) of the path or loop P is defined as the subgraph 
consisting of lines and vertices visited by P. 

(iv) We say that two loops P~ and P2 are independent if their traces 
are distinct, O(Pi) #0(P2). 

For example, under Definition 2.17, the object shown in Fig. 7a is not 
a path because it is self-intersecting. However, the object shown in Fig. 7b 
is a loop consisting of one line (a "self-contraction"). 

R e m a r k  2.18. (i) We sometimes write the path as a finite sequence 
( P(nl ),..., P(n2) ). 

(ii) If P is a path, so is its inversion p - l ,  defined as going over the 
same lines as P, but in the opposite direction. If P is a loop, so is its shift 
by m, P,,, defined as P,,(I) = P ( l - m  rood s). 

(iii) Usually a loop is defined to be an element of the first homology 
group HI(G, Z). For the purposes of the following analysis of overlapping 
and nonoverlapping graphs, it does not really matter which of the defini- 
tions one takes. 

(iv) Let Tbe  a spanning tree for a graph G. Let I~L(G)\L(T). Then 
the subgraph of G obtained by taking the union of l with the linear subtree 
of T that joins the endpoints of l is the trace of a loop under Defini- 
tion 2.17. 

De f in i t i on  2.19. G is called overlapping if there is a line of G 
which is part of two independent loops. 

R e m a r k  2.10. (i) If G is nonoverlapping and S a connected sub- 
graph, then S is nonoverlapping. 

(ii) If G is nonoverlapping, and t~ a quotient of G obtained by 
replacing a connected subdiagram with a vertex, then C is nonoverlapping. 

(iii) If G is connected and S a subgraph that is overlapping, then G 
is overlapping. 
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(iv) If G is a nonoverlapping graph, and (~ is obtained from G by 
forming a self-contraction of two external legs of a vertex v of G, then 
is nonoverlapping. 

(v) If G contains a subgraph consisting of two vertices v~ and v 2 
joined by 17 ~> 3 lines I~ ..... l,,, then G is overlapping. 

Proof. (i), (iii), and (iv) are obvious. (ii) Let (~ be a quotient of G 
obtained by replacing a connected subdiagram H by a vertex. Let (~ be 
overlapping. Then there are two independent loops L~ and L2 in (~ that 
have a line l e  (~ in common. As a path in G, L~ either crosses at most one 
external vertex of H, in which case L~ is still a loop in G, or it stops at two 
distinct external vertices of H. Since H is connected, there is a path connec- 
ting these vertices, and the composition of L~ with this path is a new loop 
in G that still contains/ .  Similarly, L_, either is already a loop in G or can 
be completed to one, and so G is also overlapping. This shows (ii). (v) Let 
the vertices be v~ and v2. Since ii i> 3, the loop L~ going from V l to v_, over 
1~ and back over 12 and the path L2 going from t,~ to v 2 over/~ and back 
over l 3 are independent. Both contain / I. So the subgraph is overlapping, 
and the same follows for G itself by (iii). | 

D e f i n i t i o n  2.21. Let G be a connected graph with two external 
legs and N vertices all having even incidence number. 

(i) If G~ ..... G,, are two-legged graphs, the strings G~...G,, is the graph 
shown in Fig. 8a. The G i may be two-legged vertices (i.e., vertices with 
incidence number two). 

(ii) G is called a self-contracted two-legged (ST) diagram if G con- 
sists only of one two-legged vertex with two external legs or if G has 
exactly one vertex v j to which both external legs of G connect, all other 
vertices have two legs, and the remaining legs of t, t are joined pairwise by 
strings of two-legged vertices to form loops. See Fig. 8b. 

(iii) A generalized ST diagram (GST) with N vertices is defined 
recursively: if N =  1, G is an ST diagram. If N~> 2 and GST are defined for 
all N' ~< N -  1, a GST with N vertices is a graph such that G has exactly 
one external vertex v~ to which the two external legs of G join, and all 
other legs of Vl are joined by strings of GST with at most N -  1 vertices, to 
form loops (which we call "generalized self-contractions"). For examples, 
see Figs. 8c and 8d; in Fig. 8c the GST insertions are marked by crosses. 

Lemma 2.22. Let G be a connected graph with two external legs 
and all vertices of G having an even incidence number. If G is nonoverlap- 
ping, it is a string of GST graphs. If G is nonoverlapping and 1PI, then G 
is a GST graph. 
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(b) 

(d) 

Fig. 8. (a) A string of two-legged diagrams, (b} an ST diagram, {c, d} GST diagrams. 

Proof. The second statement is obvious, given the first. To prove the 
first, do induction in the number of vertices N. For N = 1, an E =  2 graph 
with one vertex must obviously be an ST diagram. It is instructive to look 
at N = 2  first. There are two cases: (1) only v~ has incident external legs, 
and (2) v~ and v2 both join to an external leg. 

(1) Denote the incidence number of v l by n t and that of v 2 by 172 . 
Since two legs of t,~ are external and every self-contraction binds two legs, 
there must be an even number  n of lines between v~ and v2 (see Fig. 9). If 
n >/4, G is overlapping by Remark 2.20(v) (there are 17 - 1/> 3 independent 
loops containing any of the lines between v~ and v2). So 17 = 2, which means 
that the graph is a GST. 

(2) n~ and n2 are even, and vl and v2 each bind one external leg 
of G. Since self-contractions bind an even number  of lines, v~ and v 2 must 
be joined by an odd number n of lines. If n >/3, G would be overlapping 
by Remark 2.20(v). So n = 1, and G is a string of two ST graphs. 

Let N>~2 and assume the lemma to the true for nonoverlapping 
graphs with N'  vertices, N'  <~ N -  1, and the G be a nonoverlapping graph 
with N vertices and E = 2. 

822/84/5-6-25 
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Fig. 9. An ST diagram with two vertices. 

(1) If there is only one external vertex, Vl, G takes the form shown 
in Fig. 10a. Decomposing the subgraph B = G - v t  into its connected com- 
ponents C1 ..... C~, we see that G must be as drawn in Fig. 10b. Denote the 
number of lines joining Vl and Ck by n,. Let k~  {1 ..... l}. Since all vertices 
in Ck have an even incidence number and legs are joined pairwise to form 
internal lines of Ck, the number nk of external legs of Ck is even. As in the 
case N = 2 ,  if n,~>4, the subgraph consisting of vl and C, shown in 
Fig. 10c is overlapping by Remark 2.20(v), (ii). By Remark 2.20(iii), so 
is G. Therefore n~=2  for all k e  {1 ..... l} and, by Remark 2.20(i), being a 
subdiagram of the nonoverlapping graph G, Ck is nonoverlapping and two- 
legged with even-legged vertices and at most N -  1 vertices. By the induc- 
tive hypothesis, Ck is a string of GST, so G is a GST by definition. 

(2) If there are two external vertices v t and v2, let G~ = G-v_, be the 
graph obtained from G by deleting v2 and all the lines going into it. Let 
C~ ..... Cr be the connected components of G~, where Cl contains v~. Then 
G takes the form drawn in Fig. 1 la. Consider the quotient graph G2 where 
all Ck are replaced by vertices c, (see Fig. 1 lb). Denote the number of lines 
from v,_ to ck by nk. Then for all k>~2, n k must be even, since all the 

Vl 
~I Vl 

(~) (b) (~) 

Fig. 10. The case of one external vertex. 
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... C2 ----@1 ~ 

CI I)2 V2 
(a) C b) (c) 

Fig. I1. The case of two external vertices. 

vertices of the graph Ck have even incidence number. Since both c~ and v_, 
join to one external leg, the number n~ of lines between them must be odd. 
If n~ >~ 3 or for any k >/2, nk >/4, G2 is overlapping by Remark 2.20(v). So 
n t = 1 and n k = 2  for all k>/2, and G takes the form shown in Fig. l lc.  
Thus for all k E { 1 ..... r}, Ck is a two-legged nonoverlapping graph with at 
most N- -  1 vertices. By the inductive hypothesis, all the Ck are GST graphs 
or strings of BST graphs, so G is a string of GST graphs as well. II 

We now turn to the four-legged case, and begin by a simple charac- 
terization of one-particle reducible four-legged graphs. 

R e m a r k  2.23. Let G be a four-legged graph and all vertices of G 
have an even incidence number. If G is one-particle-reducible, G is obtained 
from a 1PI four-legged graph G' by attaching strings of two-legged 
diagrams to the external legs of G', as shown in Fig. 12. 

Proof. Induction on the number of vertices of G. Let G be I P 
reducible and / a line such that cutting 1 disconnects the graph. Upon 
cutting l, G - /  falls into two connected components. Their numbers of 
external legs must add up o six. Since, by assumption, any subgraph of G 
must have an even number of external legs, one of them must be four- 
legged and the other one two-legged. Apply the inductive hypothesis to the 
four-legged subgraph, then the statement follows for G itself. | 

G = )4 
Fig. 12. General form of a one-particle reducible four-legged graph. 
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Definition 2.24. (i) A GSF graph is a graph G with four exter- 
nal legs, all joining to a single vertex v~ of G, such that upon deletion of 
two of the external legs, G becomes a GST graph. 

(ii) A dressed bubble chain (DBC) of length r~>0 is a four-legged 
graph as follows. There are r +  1 GSF graphs G~ ..... G~+l such that for all 
i e  { 1 ..... r}, Gj is joined to Gi+ ~ by exactly two strings of GST graphs, and 
the external legs of G] and G,.+ ~ are connected to the external legs of G by 
strings of GST graphs (which may consist of only a single line). 

R e m a r k  2.25. If an external vertex v of a nonoverlapping four- 
legged diagram has at least two external legs, joining them to form a self- 
contraction gives a nonoverlapping two-legged diagram which must be a 
GST string. This is used in the proof of the following lemma. An example 
for a GSF graph is shown in Fig. 13a. The thick lines in this figure stand 
for strings of GST diagrams. An example of a DBC with r =  2 is given in 
Fig. 13b, again denoting strings of GST diagrams by thick lines and 
denoting GSF graphs by four-legged vertices with a box. An example with 
r =  1 where all vertices and lines are drawn is shown in Fig. 13c. A DBC 
of length i"=0 is a GSF with strings of GST diagrams attached to the 
external vertex of the GSF. 

L e m m a  2.26, Let G be a connected graph whose vertices all have 
an even incidence number, and with number of external lines E(G)=4 .  If 
G is nonoverlapping, then G is a DBC. More precisely, let VEe { 1, 2, 3, 4} 
be the number of external vertices of G (a vertex v is called external if an 

-?% 
(a) (b) 

(c) 

Fig. 13. Examples of GSF and DBC diagrams. 
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Fig. 14. Cutting a line of a GST diagram can produce a DBC. 

external leg of G joins to v). If G is 1PI and nonoverlapping, then VE~<2 
with G a GSF for VE = 1 and a DBC of length r/> 1 for VF~ = 2. 

Proof. For VE~< 3, one of the external vertices, vt, must have at least 
E~/> 2 external lines going in. Two of the external lines of vt can be joined 
to a self-contraction l*. By Remark 2.20(iv), the resulting two-legged graph 
G* is still nonoverlapping, so by Lemma 2.22, it is a string of GST graphs. 
Cutting l*, we see that G itself is a DBC. This is proven by the same induc- 
tion process as is used to define GST. See Figure 14 for an example of how 
a DBC is generated when l* is cut. If E, >~3, G is a DBC of length r - -0 .  
If Ve=  3, the two-legged graph G* constructed from G has two external 
vertices. Since it is nonoverlapping, it must be 1P reducible by Lemma 2.22 
and Definition 2.21(iii), so G is also 1P reducible. Thus VE=3 is 
impossible if G is I PI. 

If V E-- 4, we use Remark 2.23 to decompose G into the IPI graph G' 
and the strings of two-legged subdiagrams attached to G'. By Remark 
2.20(i), G' must also be nonoverlapping and the strings must consist of 
GST diagrams. If VE(G') <<, 2, we know by the above that G', and hence G, 
is a DBC. Now, VE(G' ) = 3 is impossible, since G' is 1PI. Thus, to com- 
plete the proof, we only have to show that VE(G') = 4  is impossible as well 
for a four-legged nonoverlapping 1PI graph G'. So assume that VE = 4, let 
v be an external vertex of G', and let S = G ' - v .  Since V E = 4, v binds only 
one external leg of G', so v connects to S by an odd number of lines. Let 
C~ ..... Cp be the connected components of S. One of them must connect to 
v by an odd number n* of lines. But if n* = 1, G' is reducible, contrary to 
our assumption, and if n*~> 3, G' is overlapping by Remark 2.20(ii), (v), 
again a contradiction. 

(a) (b) (c) 

Fig. 15. The case V~(G ' )=4 .  
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The alternatives are sketched in Fig. 15. The black box K consists of 
v, together with all connected components of S that do not contain an 
external vertex. In the figure, K is drawn four-legged; in general, it may 
have a larger incidence number. Figure 15a is the case n* =3.  The two 
loops joining K and S overlap. Figures 15b and 15c are cases where 17"= 1. 
The figure can be disconnected by cutting a line leaving K. | 

2.5. Decomposi t ion of the Tree of a Labeled Graph 

We now consider labeled graphs and show how to decompose the 
associated tree into subtrees corresponding to overlapping and nonoverlap- 
ping graphs. It was mentioned in the motivation of the classification of 
graphs into overlapping and nonoverlapping ones that the bound for the 
value of overlapping graphs contains as a factor the function 12 defined in 
(1.34). As discussed in Section 1, this factor arises because the propagators 
of scale j < 0 are supported in a shell of thickness M j near the Fermi sur- 
face, and the intersection of such a shell with its translate by some momen- 
tum p is transversal for all p outside a set whose volume shrinks with the 
thickness of the shell. Therefore, the arguments Ilk in 12 will be Mh-, where 
Jk are scales of the lines involved. The volume improvement factor might 
arise only at a relatively high scale, and to exploit it as much as possible, 
it is therefore very important in our analysis to keep track of the scale at 
which this volume improvement factor arises. We do this by decomposing 
the tree of the labeled graph G g into maximal subtrees corresponding to 
nonoverlapping subgraphs. 

We start with an example to illustrate the idea behind the procedure. 
In Fig. 16, a graph with scale assignments 0 > h ' >  h > j  is shown from top 
to bottom on decreasing scales. The interaction lines appear only on scale 
zero. On the lowest scale j (root scale), the graph is nonoverlapping, since 
all lines of higher scale are collapsed into effective vertices. On scale h > j ,  
the graph is overlapping, and the volume improvement factor arises at 
scale h in this example. In general, the strategy will be to go from lower to 
higher scales (from bottom to top in Fig. 16), resolving (i.e., expanding) the 
effective vertices until either scale zero or a scale on which the graph over- 
laps is reached. With a properly chosen spanning tree for the graph, the 
volume gain is then extracted. 

Definition 2.27. (i) Let G J be a labeled graph with tree t. For a 
(connected) subtree t' of t (we shall denote this as t' c t), rooted at a fork 
~,,, define the projected graph G(t') as a quotient graph of G g ,,, as follows. 
If f " ~  t' is a fork directly above t', i.e., there is a fork f ' E  t' such that 
r~(f") = f ' ,  replace G g by a vertex with the same external legs as G~", and f" 
with vertex function Val(Ggr.,). The lines in subgraphs Gf with f e  t' join 
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scale h ~ 

I " 1  
0 B , - - - 

' ,  3 J J , '  

J 

f - y - - . .  

h * ( i ) " 

J 

Fig. 16. A labeled graph at several scales. 

these vertices to form the graph G(t') (leaves of t that are also leaves of t' 
remain the same vertices they were before). 

(ii) For a subset A of the set of forks and leaves of t, define 

a(A) = { f '  e t\A: f '  fork, 3f e A: n(f ')  = f }  

~4(A) = { f ' e  t\A: f '  fork, 3feA: f '  >~f} 

Thus ~'(A) is the set of all forks of t\A that are above A and o-(A) is the 
set of all forks of t\A that are immediately above A. 

(iii) For f e t, denote by (r the subtree of t rooted at f that contains 
all forks and leaves in d ( { f }  ). 

Remark 2.28. (i) G(t') is the graph where all subdiagrams 
belonging to forks above t' are collapsed to effective vertices, and where all 
subdiagrams belonging to forks in t' remain subdiagrams. 
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(ii) (~(t') is connected. 

(iii) The mapping G J ~,, ~ G(t') also acts naturally on sets 0 of lines of 
G~,,. Those lines in ,9 corresponding to t'-forks are left unchanged. All 
others are absent in the projection. The projections of paths L, etc., will be 
denoted as/2,, o r / , ( t ' )  if necessary. Note that the projection of a path need 
not be a path in the sense of Definition 2.17 because it may visit a vertex 
more than once and hence fail to be injective. 

(iv) t' may be trivial, that is, consist only of its root fork; then we 
write t' =q~,, and G( t ' )=  (~(~b). 

To do the tree decomposition, we need some more facts about non- 
overlapping graphs, which we state in the following lemma. If G is a graph 
and H a connected subgraph with 2m external legs, we denote by G/H the 
quotient graph obtained by replacing H by a vertex with incidence number 
2m. In our convention, external legs of a connected graph are not counted 
as lines of the graph, and the statement that two subgraphs A and B of a 
given graph are disjoint means that they share no vertex (so an external 
vertex of A may be connected to an external vertex of B by a line which 
belongs neither to A nor to B). 

k e m m a  2.29. Let G be a connected graph. 

(i) Let G have only vertices with an even incidence number, let T be 
a connected two-legged subgraph of G, and assume that G/T is nonover- 
lapping. Then 

G is overlapping r T is overlapping 

(ii) Let G~ and G2 be disjoint connected subgraphs, and assume that 
G, = G/G~ and t~ 2 = G/G,_ are nonoverlapping. Then G is nonoverlapping. 

Proof. (i) " ~ "  is obvious by Remark 2.20(iii). " ~ " :  There are two 
independent overlapping loops K and L in G. Since G/T is nonoverlapping, 
their traces must differ in T. If T were nonoverlapping, T would be a string 
of GST, and by the structure of GST graphs and the condition that any 
path may visit a given vertex at most once, both K and L would have to 
step over the same lines in T. So then O(K) -- O(L), which is a contradiction. 

(ii) Assume G to be overlapping. Then there are independent loops 
K and L such that the set of lines which are part of both loops is not 
empty. Thus there exist "splitting points," which are vertices as follows: v 
is a splitting point if v is endpoint of a line l 0 that is part of both K and 
L, and of lines k and l such that k is a line of O(K) but not of 0(L), and 
l is a line of 0(L), but not of O(K). In other words, a splitting point is 
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a vertex at which the two paths deviate after going over the same line(s). 
Let v be such a splitting point, and 10, 1, and k be as defined above. Also, 
denote the second endpoint of 1o by w. 

If v E G~, we will construct loops K 2 and L 2 in (~2 as follows. First we 
reparametrize K and L (using the shifts and inversions described in Remark 
2.18) so that they start at w and the first line is 1o, and the second is k for 
K and I for L, etc. Since v E G~, and since G~ and G2 are disjoint, none of 
/o, l, and k can be in G2, so 10, l, and k are all in (~2. 

If w is in G2, we take K 2 to be the restriction of K up to the first point 
when a vertex of G 2 is hit by K; this is a loop in (~2- L2 is defined similarly. 
By construction, O(K2) contains k, but not l, and 0(L2) contains l, but 
not k, so these loops are independent, and both contain 1o. So C2 is over- 
lapping, which is a contradiction. 

If w is not in G2, we take K 2 to be identical to K up to the first point 
where K hits G2; then we continue it to be K from the last time K visits 
a vertex of G,_ (if K does not visit G2, K 2 = K). L2 is defined similarly. Again, 
these loops are independent, and overlap at Io, which is a contradiction. 

If v ~ Gt, we construct loops K 1 and L1 in (~ starting again at w, and 
going over l o and k or l, this time taking out the parts between first and 
last visits of G~, to avoid multiple visits at the vertex of C~ that replaces 
G~. Since v is not in G1, the lines/o, l, and k are all in (~ ,  so K~ and L~ 
are again independent overlapping loops in (~1. This contradicts the 
assumption that (~l is nonoverlapping. II 

R e m a r k  2.30.  If the vertices are allowed to have odd incidence 
numbers, (i) does not hold, as can be seen from the graph in Fig. 17 (the 
subgraph H is the part of G inside the dashed circle). 

Lemma 2.31. Let G J be a labeled graph, t its tree, and J'~ t a fork. 

(i) Let f l  ..... f , , 6 t  be forks or leaves such that n ( f / ) = f  Vi, and 
assume that for all i~ {1 ..... n}, C(.~) is nonoverlapping. Then 

f 

is nonoverlapping as well. 

Fig. 17. A graph with vertices with odd incidence number. 
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(ii) Let G( f )  be nonoverlapping. Then there is a unique maximal 
tree r r c  t, rooted at f ,  such that G(rl) is nonoverlapping, i.e., if r is such 
that G(r) is nonoverlapping and such that ~b~=f, then r c  vs.. 

(iii) There is 

~,V'c {~b} u {f: E(G~)=2, (~(f) 1PI and nonoverlapping} (2.77) 

such that (a) q~ e,4/" if and only if (~(~b) is nonoverlapping, (b) if f ,  f '  sJI/" 
w i t h f r  then ~rand T r are disjoint, and ( c ) i f f ~ Y  but E(G~)= 2 and 
G(f )  is 1PI and nonoverlapping, then there is an./" e X  with U c  ~r'- 

Here rr, ~r' are the maximal trees associated to f ,  f '  in part (ii). 

['roof. (i) follows as in Lemma 2.29(ii). 

(ii) Let S = { t ' c t i :  G(t') nonoverlapping}. Since G ( f ) i s  non- 
overlapping, S ~ ~ .  Build up the tree r.r recursively as follows: for all forks 
or leaves f l  ...... s wi th . f=  ~(.s add-~ to r i if G(~) is nonoverlapping [ note 
that if ~ is a leaf, then ~(.~) is always nonoverlapping if G( f )  is non- 
overlapping, since G(}) = G(f ) ] .  The resulting tree 

f 

is then nonoverlapping by (i). If for all forks fl  ..... f,,, C(i~) is overlapping, 
then 

D l . . .  U b 

r~t= f 

where v, ..... Vb are the leaves with n(v~)=f,  or "(f=f if b = 0 ,  and the 
process stops. Otherwise, repeat the procedure for every f ' e  {f,.,,..., f~k} 
that is a fork, add branches ('r,i if the corresponding graph is nonover- 
lapping, add all branches to leaves, and stop if there are no forks with non- 
overlapping graphs (~(f/'). Repeating this, the process ends after a finite 

. J i l  . 

number of steps. It xs obvious by construction that the tree so obtained is 
maximal in S and therefore unique. 

(iii) Put $ into ~,V if (~($) is nonoverlapping, and in that case con- 
struct % using {ii). Let M2(G J) = { f ~  t: f >  q~, (~(J') is nonoverlapping, 1PI 
and two-legged}. We construct ~4 r by induction on the number of forks N 
of M,_(G~). If N = 0, i.e., M2(G")= ~ ,  then JI r = ~ or ~,~ = { ~b}, depending 
on whether ~(r is overlapping or not. Let N>~I and assume that the 
family has been constructed for all N' ~<N-1 .  Let {f, ..... f,,} be the set of 
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all minimal forks of M2(G J) (in the partial ordering of t). For all k, con- 
struct r r k by (ii). Because of the tree structure, we can consider each k 
separately. Let g = f k  for some k. Now, d ( rg )  is a disjoint union of trees 
rooted at forks f ~ a ( r g )  [or <~r ~ ,  in which case we are done with 
g]. Each of these trees has N' ~<N-1  forks in M2, so the inductive 
hypothesis applies. Add to JV the forks that have been selected by the 
inductive hypothesis from each of the trees. This really gives a family of dis- 
joint trees in the sense that no element of ,/l r is directly above a fork in a 
tree r.r of ~4 r, as is implied by the remark following this lemma. 

Suppose now that f e t \ . / g ,  but E(G~)=2 and G(f)  is 1PI and non- 
overlapping. By the construction of ~4/ the set { f " e X :  f "  < f }  is non- 
empty. Let f '  be the maximal element of this set. Also by construction 
J 'Srr ' .  To complete the proof it suffices to show that if r.rr rr', then the 
tree rr' is not maximal in the sense of (ii). To see this, first observe that 
G((rr,)r) is nonoverlapping by Remark 2.20(i). So the maximality of r i 
implies (rr,)r c r i, which in turn implies C(r/2w r.r,) is obtained by replacing 
the two-legged nonoverlapping subgraph G((rr,).r) of (~(rf,) by the two- 
legged nonoverlapping graph C(rr). Remark 2.20(ii) and the following 
remark ensure that (~(rr U r.r,) is nonoverlapping. So the assumption that 
rr' 4: r_rW r r, contradicts the maximality of rf,. Thus t i c  r.r,. | 

Remark 2.:12. Let G J be a labeled graph of our model, t(G J) its 
tree, and let r be a subtree of t such that 67(r) is nonoverlapping. L e t f b e  
a fork directly above r, i.e., f e a ( r ) ,  such that E(G r) = 2. Then 

/ % 

( ! )  overlapping ~ G(f)  overlapping (2.78) 

Proof. Apply Lemma 2.29(i). II 

Remark 2.33. Note that Remark 2.32 holds only for two-legged 
subdiagrams. For example, the graph at scale j in Fig. 16 is not over- 
lapping, while that at scale h is overlapping. Nonetheless, to go from the 
graph at scale j to that at scale h, one replaces the six-legged vertex by 
the tree diagram shown in Fig. 18, which has no loops and hence is not 

Fig. 18. The six-legged scale h subgraph of Fig. 16. 
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overlapping. So, it is possible to replace one vertex in a nonoverlapping 
graph by a nonoverlapping subgraph and produce an overlapping graph. 
This plays a role for estimates of derivatives. 

2.6. Improved Power Counting 

We now extract the volume improvement factor in the value of any 
graph that overlaps at some scale, and use it to show an improved power 
counting bound that holds for every such graph. We also give a natural 
routing prescription for the external momentum suited to bounding 
derivatives. In this section, let G~ Gr(n, m; ml ..... m,,), J: I~--~jl be a labeling 
of G and VaI(GJ)(C,  ~[v, ..... d]lrn ) be given by (2.54). A loop basis for the 
graph is a basis for HI(G, Z). Since for an overlapping graph, the two 
overlapping loops (in the sense of Definition 2.17) define linearly independ- 
ent cycles, we may use both of them as basis elements. Recall that there is 
a natural basis for H~(G, 71) associated to any spanning tree T for G. It 
contains one loop for each element of L(G)\L(T). The loop associated to 
l~L(G)\L(T)  consists of l and the path in T joining the ends of I. Also 
recall that T is consistent with J if Tc~ G(tl) is a spanning tree for G((r) for 
all forks f ~ t~. 

By definition, a graph G is overlapping if there exist two independent 
loops in G which share a line. A priorL the specific loops determined by a 
spanning tree for G are not required to overlap. But of course they do. This 
is proven in the following lemma. 

l . e m m a  2.34. (i) If G has a spanning tree T without any 
associated overlapping loops, then no spanning tree of G has any 
associated overlapping loops. 

(ii) If G is overlapping and T is an arbitrary spanning tree of G, then 
there are two overlapping loops associated to lines l~ and 12 E L(G)\L(T). 

Proof. (i) Let Tbe  a spanning tree for G such that all of the loops 
L~ ..... L,, associated to Tdo not overlap each other. Define TNL = G\U~= 1 Li. 
Then (i) is a consequence of (a) if 1E TNL, then G - l  is not connected, and 
(b) for each 1 ~< i ~< 17, every spanning tree for G must contain all of Li save 
exactly one line. 

Now, (a) and (b) imply that any spanning tree for G must consist of 
G minus exactly one line from each of L~ ..... L,,. 

Proof of (a). First note that TNL C T because, by definition, every 
line of G that is not in T generates one of Lj ..... L,,. If G -  l is connected, 
there is a path in G - / t h a t  joins the two vertices at the ends of l. There 
is always such a path that is also contained in T, because T contains all of 
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G save one line from each of LI ..... L,,. If the path uses the missing line 
from L~, we can always replace the missing line by the rest of L;. Hence 1 
union the path is a loop in T, which is impossible. 

Proof o f (b ) .  Delete two lines 11, 12 from O(L~) [0(L) is the subgraph 
corresponding to L; see Definition 2.17(iii)]. Then O(L~) - l I - 12 consists of 
two connected pieces A~, A2. In the event that 11 and / 2 are nearest 
neighbors on L~, A ~ and/or A2 is a trivial graph consisting of a single ver- 
tex. Suppose that there is a path P in G - I i - / 2  connecting a vertex v~ of 
A I to a vertex v2 of A2. We can assume without loss of generality that this 
path contains no lines of L I. As in the proof of (a), we can also arrange 
for the path to be contained in T. One of Ii and 12 must be in T, so we can 
construct a loop in T using P and part of LI. This is impossible, so P can- 
not exist. So no spanning tree for G can be contained in G-11  -12.  

(ii) It suffices to construct one spanning tree T for G that has two 
overlapping loops associated, because by (i), any other spanning tree for G 
will then have the same property. Let L I and L2 be independent overlap- 
ping loops in G. Let 1~ be a line in LI that is not in L2. The line l I exists 
because if O(Li )c  0(L2), then either 0 (L I )=  0(L2) o r  L2 is self-intersecting. 
Put O(LI ) - I i  in 7". Note that, regardless of how we complete T, the loop 
associated to l~ will always be LI. Let 12 be a line that is in L 2, but not 
in L 1. Denote by v l and v2 the vertices at the ends of /2 .  Add to T the 
unique connected subgraph of O(L,_) that does not contain l 2, that has v I 
as one terminating vertex, that has a vertex w~ of O(L1) as its other ter- 
minating vertex, and that contains only one vertex of O(LI). Similarly, add 
to T the unique connected subgraph of O(L2) that does not contain 12, that 
has v 2 as one terminating vertex, that has a vertex wz of 0(Lt) as its other 
terminating vertex, and that contains only one vertex of O(LI). Note that 
the two pieces of L_, that have just been added to T contain no lines of LI 
and that wl :~ w2, because L2 must overlap L~ and cannot be self-inter- 
secting. Regardless of how we complete T, the loop M2 associated to lz will 
contain 12, continue along L 2 from vt to w~, continue along LI from |1,' 1 to 
%,  and finally continue along L2 from w2 to v2. Thus the loops associated 
to Ii and 12 overlap. Complete T any way you like. II 

I_emma~ 2.35.  Let G be overlapping. Let J be an assignment of 
scales to G. 

(i) Let r~ be the maximal subtree of t(G J) rooted at q~ for which 
G(r,)  is nonoverlapping. Let j *  =min{jir: . [ecr(r , )}.  Then for any tree T 
consistent with J there is a line l * e  T with J/* ~<J* which is contained in 
two independent loops associated to lines 1~ and 12eL(G)\L(T) .  In the 
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case that (~(~b) is overlapping, j*  =j~.  In the assignment of momenta to 
lines of G given by T, 

p~. = q-p~ ___p~ + Q (2.79) 

where Q is a linear combination of loop and external momenta inde- 
pendent ofp~, and p~,. 

(ii) Assume that the propagators assigned to the lines of G satisfy 

ICj,(Po, e(p))l ~Zi M-jr+2 l(lipo-e(p)l ~ [M s'-:, mJt]) (2.80) 

with factors z/>0. Let K o be as in Lemma 2.3(ii), e be as in Proposi- 
tion 1.1, A be as in Lemma 2.3(ii), and let 

2 

Kl = C,,on ~ (2.81) 

Then 

IVal(GS)lo <~K, I-I (4Ko&) I-[ I~ Mv''M~162 
t E L ( G )  oE V(G} 

x H M~ (2.82) 
f >  ql 

Proof. (i) Let T be any tree consistent with J. For example, Tmay 
be built by first building spanning trees for the topmost forks of t(GS), then 
extending these to spanning trees for the next level of forks of t(GJ), 
and so on. Let b obey jb=min{ji~ fecr(r~)}. Then ~ ( r~w{b})=  
Tm C(r+ w {b} ) is a spanning tree for G(r~ w {b} ), because if you collapse 
a connected subgraph of a tree, you get another tree. By the maximality of 
r~, (~(r,~ w {b}) is overlapping. By Lemma 2.34(ii), any spanning tree for 
any overlapping graph has associated at least two overlapping loops. So 
there is an 1" ~C(r~w {b}) that is in two independent loops /'i and /,2 
associated to T(r~w {b}). These loops expand to two independent loops 
L~ and L 2 associated to T, both of which contain 1". Then (2.79) follows 
for 1" because any line that is part of the loop L; has the momentum pz, 
flowing through it, i.e., the linear combination of momenta making up pt. 
contains summands +p~, and __+p~,, the __+ depending on the relative orien- 
tation of the lines. 

(ii) After fixing of the momenta on the lines of T, the expression 
(2.54) for VaI(G) becomes 
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Val( GJ)(tll ..... t l~, ,-1,  f12,,) 

= E f 17 a"*'p, I-I 
s p i n s  = IEL(GI\L(T)  I~L(G) 

f i  tql  t . u l  .,.1 ))=., ,, (2.83) 
X ', u i L U  I ~ ' " ~  / ~ 2 m i - -  I I ..... ~ i 

i = 1  

where qk = (q~, fie) and 2m; = E~,, and the momenta on lines and in the ver- 
tex functions qlv match up according to the fixing of the momenta described 
in (i), and for each t e L ( T ) ,  p ,  is a linear combination of the loop 
momenta (p~)~ L(a)\L(T) and the external momenta q t ..... q,_ ....  ~. 

We bound the spin sum at both ends of every line I e L ( G )  by a 
factor 2 times the maximum over spins and take the sup norm of all ~ 
to get 

IVal (G)(C,  % ,  ..... W,,,,)lo <~ 41L'~'IX ~ 1%10 
k = l  

where 

sup f rI a +'p,l-I 
ql, '",q~n-I I~L(GI\L{T)  l eL(G)  

By hypothesis, upon integration over the (P~)o, 

(2.84) 

ICjt((P~)o, e(p~))J (2.85) 

where 
t~ L(G) IE L(G)\L( T} 

Y= sup I I-I (dap ,  l ([e(Pt)l<~MJl))  
ql  ' " "  q 2 m -  I ] E L{ G } \ L ( T )  

• I-~ l([e(p,)J ~<M j,) (2.87) 
l E T  

Ordinary power counting, we would obtain Lemma 2.4(i) by omitting the 
last product over le  T. Improved power counting is obtained by keeping 
only one factor, that from I = / * e  T, of this product, to use the volume 
improvement estimate, Proposition 1.1. Applying (i), integrating over the 
loop momenta P/, and p6 first, and recalling (1.34), we obtain 

�9 MJ'2' M'/") f I-I Y ~< 12(Mill, 
IE L( G)\L[ T) 

lr { I i , / , i  

ddpl 1 (le(p/)J ~< M h) (2.88) 
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By Proposition 1.1 and Lemma 2.3(ii), 

Y <~ C~ol M ~jl" M jl' M j': l-I A M j  ' 
IE LtG)\L(T) UO 

/r  {/i,/,.} 

<. K, M ~J'' 1-[ A M]  ' (2.89) 
1~ L(G)\L(T) blO 

We insert this bound for Y, use IL(G)\L(T)I  <~ IL(G)I, and X/u o >/1, and 
reorder the product over scales by the usual telescope formula 

J /=J~  + ~'. (./f --J,~f)) II 
f > r  
leGt 

Remark 2.36. Apart from a constant, the improved power counting 
bound is the ordinary power counting bound times an improvement factor 
M J*~, where j*  is the scale at which the graph overlaps. By Lemma 2.3(i), 
the propagators Cj given by (2.17) satisfy the hypothesis of (ii) with z /=  I. 
Derivatives with respect to p or e satisfy a bound with z / = const �9 M - J / b y  
Lemma 2.3(iii). 

We now want to prove that for any labeled graph G s with (scale) tree 
t(GS), there is a spanning tree such that the external momentum does not 
enter any of the lines in (~(rf), for a l l f s  JV'. We first explain why there is 
anything to prove. Any two-legged 1PI nonoverlapping graph has only one 
external vertex v~. The external momentum can trivially avoid all internal 
lines of such a graph. However, even if G(f )  is nonoverlapping, G(tf) may 
be overlapping. In fact, the image of a poorly chosen spanning tree for G 
under the projection onto C may not even be a tree. Consider, for example, 
the graph drawn in Fig. 16. If the leftmost line carrying scale j is in the 
spanning tree of G at scale zero (top of the figure), what remains of T in 
the projection of G on scale j (bottom of the figure) is certainly not a tree 
graph. The way to avoid this problem is to start at the bottom, i.e., at root 
scale, to construct a spanning tree for G(r and then go upward on scales, 
constructing spanning trees for all the subgraphs that appear as effective 
vertices, and combine them to a spanning tree for G using the following 
simple fact. 

Remark 2.37. Let G be a graph, G' a connected subgraph of G, 
and C the quotient graph of G obtained by replacing G' by a vertex. Let 
T' be a spanning tree for G' and 7" a spanning tree for (~. Note in particular 
that T' necessarily consists only of internal lines of G'. Let T =  T ' u  1". 
Then T is a spanning tree of G. 
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Lemma 2.38. Let G s be a labeled two-legged 1PI graph and let 
(rr)f~,~- be the family of subtrees of Lemma 2.31(iii). Then there is a 
spanning tree of G such that for all f e  ,4 ~, the external momentum enters 
in no line of (~(rf), and such that for all f ~ J V ,  there is an improvement 
factor M~J? with JIP <~ min{jb: b leaf of r r }. 

Proof. We first construct a suitable spanning tree for (~(rf), for any 
f e  JV'. This is easy, On each loop of G(rr) delete a line l' of lowest scale. 
Since (~(rf) is a GST graph, this does not disconnect it. It leaves a tree Ty, 
which is already the desired spanning tree for G(rf). In particular, it is con- 
sistent with r i. This means the following. Let f '  be a fork of rf  and t r the 
subtree of rf  consisting o f f '  and all forks of zf above f ' .  Then Tfc~ G(tr,) 
is also a spanning tree for G(tr, ). To see consistency, it suffices to check 
that Trc~ G(tf,) connects all pairs of vertices v, v' of (~(tr), because clearly 
Trn G(tr) can contain no loops. As G(tr) is connected, it contains some 
path from v to v'. The only problem is that this path may use the one line 
/' of some loop L that is omitted from T s. But because l'~(~((r') and 
Jr ~<Jr' for all 1" eL,  we necessarily have L c G(tf,). But then we may use 
L\I' c T i instead of l' in the path. 

Since the loops determined by Tf do not overlap and t~(rf) is 1PI, all 
lines on the same loop carry precisely the loop momentum Pr. The external 
momentum enters only in the vertex function of the one external vertex, 
but not in any internal line of C(r.r). Now we combine them, going upward 
from the lowest forks f ~ X .  Choose a leaf b of zf such that j*  =Jb is 
minimal. By the maximality of r r, G)= (~(bi) is overlapping. Grow a 
spanning tree for G(b). Combine it with the spanning tree T i of G(r.r ) by 
Remark 2.37 to get a spanning tree for G). Lemma 2.35 applies, so there 
is a volume improvement factor on scale j*  or below. To get a spanning 
tree for G, we do the above procedure for all (~(rf), f e ~4 ~, then choose an 
appropriate spanning tree for the remaining subgraphs of G and put them 
together using Remark 2.37 to obtain a spanning tree T for G. This is 
possible because, by Lemma 2.31(iii) and Remark 2.32, all the G"s f are 
disjoint. I 

Remark 2.39. Note that the external momentum does enter inter- 
nal lines of nonoverlapping 1PI two-legged graphs if vertices with odd 
incidence nurhber are there; see, e.g., the graph of Remark 2.30. 

Theorem 2.40. (Improved power counting). Let G J be a labeled 
graph contributing to the sum (2.72) for G~ ...... let t be the tree associated 
to G J, and let ~b be its root. Let Jff be as in Lemma 2.31(iii) and f o r f e  ~ ,  let 

j* ( f )  = min{jb: b leaf of rf} (2.90) 

822/84/5-6-26 
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Then 

[ Val(GJ)lo <~ (4Ko) IL~~ (KI M ~j) 1r162 I1 (Kl M~Y*r 
f ~ : . i "  

• MjD~ I-I M~ 
f ~ t  

f>~ 

x 1-I 10rio [1 [F,,Io (2.91) 
v t w o - l e g g e d  v f o u r - l e g g e d  

Proof. Choose the spanning tree of Lemma 2.38, fix the momenta, 
collect the improvement factors given in Lemma 2.38, going upward from 
root scale, and do not forget the one at root scale if the graph is overlap- 
ping on root scale, that is, ~b r ~ ' .  This works because the higher G(rr) 
appear as vertex functions in the lower ones, so that one can indeed apply 
Lemma 2.35 separately for all (~(rf), fE . /V,  and because Remark 2.32 
assures that no improvement factors are counted twice. | 

If C(q~) is nonoverlapping on root scale, then there is no improvement 
factor M ~J. For general nonoverlapping graphs, e.g., four-legged ones, there 
is no further improvement without more specific assumptions on the band 
structure e. However, for two-legged 1PI graphs, one can use a refined 
bound that exploits sign cancellations to show that their root scale 
behavior does contain another factor of M ~j even if they are nonoverlap- 
ping on root scale. This bound, which we now prove, is more subtle than 
the previous ones and we will have to use it with care when proving the 
statements about the derivative with respect to e in Section 3. We first give 
the explicit formula for Val(G) for nonoverlapping two-legged graphs. 

Remark 2.41. Let G be a nonoverlapping, 1PI, two-legged graph. 
By Lemma 2.22, G is a GST graph. By definition, these graphs have an 
obvious recursive structure: let vl be the external vertex of G, with 
incidence number 2ml. Let vi, ..... v#, be the vertices of G that have 
incidence number />4 and that are on one of the self-contraction loops of 
Vl. By definition of a GST graph, each vertex v~k is again an external vertex 
of a GST (or ST) graph G~k. Choose a spanning tree for G as in Lemma 
2.38. Then the value of G takes the form 

( Val(GS)(C, ~ ..... ~lv,))pp. (q) 

= z 
ot I , . . . ,  ~ , 1  - 2 i = 1 

x (q/,,,),, ...... ,_,p~,,, .... ,~,,,_.j'(Pl ..... P , , , - I ,  q, Pl ..... P,, , ,- l)  (2.92) 
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where S~(p)e M_,(C) are strings of subdiagrams, 

[wi-- 1 I SAP)=( ]-I Cjk(P) ~'r Cj,,,(p) 
\ k = l  

(2.93) 

with w~ the number of lines of the string S~, ~ ~ { 1,/, 1 -1},  and Tk(p) the 
kernel either of a two-legged vertex or of the (G)ST graph G;, if it is 
associated to one of v;, ..... vg. Because of (2.16), there are j "~ such that for 

all k ~ { 1,..., w~}, Jk ~ {J"', J ' ; ' +  1}. 

Lemma 2.42. Let j < 0 ,  n~>l, k e { 0  ..... n - l } ,  m e { 1  ..... n}. Let 
T~ ... T,,_l ~ C2(R xM) and g~C(Rx:~) .  Let 

Ij= f~ dpo ! d'tp Cj(po, e(p))"' Cj+,(po, e(p)) ...... 

k n -  1 
xg(Po, P) I~ (1-1)  T,,.(p) r-[ ITw(p) (2.94) 

w =  1 u ' = k +  1 

Then there are constants UI ~< U2, Us depending on M, u o, lul. d, and 6 
such that 

k .'1-- I 

IIjI<~U, M2"MJlglol--[ IT,,.I, I-I (IT,,.Io M-j )  (2.95) 
w =  I w = k +  I 

and, i f g e  Cw(R xM), 

where 

IIjI <~ U,M'-"M "-j [-[ ( I r , . I o M - O  
w = k +  I 

• g[,,j [T,.[, + Ig[oj ~ [T,,12 I-[ [T,,.[, 
w = l  1 ' = 1  u ' ~ t '  

(2.96) 

Igl.,..j= Y" sup{lO=g(p)l: [Pol~<MJ, [e(p)l~<M j} (2.97) 
~: I~1 ~<s 

Proof. We change variables to (p, co), as given in Lemma 2.1, and 
denote Y(Po, P, co) =g(Po,  P(P, co)) and 0,.(po, p, co) = T,.(po, p(p, co)). 
Then 

fT,,.(p) = 0,,.(0, O, co) 
(2.98) 

(1 - - / )  T,,.(p)= O,,.(po, p, ~o)- 0,,.(0, O, ~o) 
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and 

n - -  I 

x Isdco (JY)(Po, P, o9) [I  ~,.O,.(po, p, co) (2.99) 
w =  1 

Here J(Po, P, co)=J(P, co) is the Jacobian of the change of variables; see 
Lemma 2.1. In polar coordinates (r, q~) such that p = r s i n  q~ and po = 
r cos cp, dpodp=rdrdc  p, 

f( M -  2Jr 2) 
Cj(po, p) - ireg ~ (2.100) 

Since m>~t, 

f(M-2Jr2) "' f (M-ZJ-2r  2) . . . .  <~f(M-2Jr 2) <~ l ( r e  [M j-2, MJ]) (2.101) 

Noting that s is independent of ~o and r by (2.98), and writing the 
difference 

Ow(rcoscp, rsin~o, co)-O..(O,O, co)=rA.,(r, cp, co) (2.102) 

with 

I 

A,.(r, cp, co) =fo  dt (cos cp 0o + sin ~o 01) O,.(trcos cp, tr sin ~o, co) (2.103) 

we obtain 

where 

with 

n-- ] 

Ilsl<'~HjM2"+lMJfsdco I-[ (10,,Io M - j )  (2.104) 
. ' = k +  1 

Hj = sup sup dcp e-~"~~ cp, co) (2.105) 
coGS rE[O, MJ] 

k 

~b(r, cp, co) = (JT)(r cos cp, r sin cp, co) 1--I A,.(r, cp, co) (2.106) 
W ~  ] 

Bounding the g-integral by 2n ]~b[o results in the ordinary power counting 
bound (2.95). 
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But we can do better than that by being more careful about the 
integral over ~0. After a Taylor expansion of 4, around r = 0, 

f~ 04, 4,( r, ~o , co) = 4,(0, q~ , co) + r dt -~r ( tr, ~o, co) (2.107) 

Hj splits into two terms. The first term contains 

k 

r co)=J(O,~)~,(O,O,~) 1-] (cos~oOoO,,(O,O, co) 

+sin  ~o 010,,.(0, 0, co)) 

which is a polynomial of degree k ~< n -  1 in e i~ and e -i~, so 

(2.108) 

I • "  d~o e-i"~'4,(O, q>, co)= 0 (2.109) 

In the second term, we bound 

(tr, rp, ~<l/~lo ~', IZoh IZ,,I, +IJYll I-I IT,,.I, (2.110) 
t ) ~  1 I t, ; ' . ' =  1 

The factor r from the Taylor expansion gives the additional M s. Collecting 
the constants ]J]1 and others coming from the relation between y and g, we 
obtain the lemma with constants Us that depend on ~o, [u].,., Uo, and d. | 

R e m a r k  2.43. In the application to the value of a nonoverlapping 
graph, the g in Lemma 2.42 will be the vertex function qlv,, which may 
depend on other momenta. Replacing Ig]o and Ig[1 by the corresponding 
norms of the restriction of g(p) to p obeying IPol, le(p)l ~ M  j+1 retains 
information about the support of the propagator Cj. As the example of 
Remark 2.33 shows, this information is necessary for volume improvement. 
In fact, Lemma 2.35 applies to that expression, in which the string S I is 
replaced by a propagator that satisfies the hypothesis of Lemma 2.35(ii) 
with z I = M jr. We shall also need the expression for Ij itself; it is 

I j= i -"  M j ( " - k -  1 ) I :  dr rk-"+ Zf(M-ZJr2) " f ( M - Z J -  2r 2) . . . . .  

do) d~o e-i"~' dt ~r ( tr, ~o, co) I-I 
w = k + l  

M-J0,,(0, 0, o2) (2.111) 

with 4, given by (2.106). 
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2.7. Convergence of the Renormalized Green Functions 

The power counting bounds show that divergences in the scale sums 
of graphs contributing to the Green functions come from unrenormalized 
two-legged insertions, as discussed at length in the Introduction. In this 
section we show that the renormalized Green functions converge in the 
limit I ~  - oo in every order in perturbation theory, i.e., that the scale sum 
for the value of any graph converges. The bound for this value depends 
on the order of perturbation theory r, and for some graphs it contains a 
factor r !. We show that under the stated assumptions, in particular because 
of the nonnesting condition A3, these factorials in bounds for single graphs 
can arise only from the lack of decay of those forks f with E(G~.)=4 for 
which the graph (~(f) is nonoverlapping. For the overlapping graphs, such 
factorials do not arise even if G s is four-legged, because the improved f 
power counting always produces enough decay to make the scale sum con- 
vergent instead of marginal. We state this precisely in this section and 
prove Theorems 1.2 and 1.3. 

We shall show finiteness of the renormalized Green functions by 
deriving power counting bounds for the two- and four-legged effective ver- 
tices that arise in the scale flow. The two-legged vertices correspond to the 
r- and c-forks. Although dealing with these effective two- and four-legged 
vertices is a standard procedure of handling trees and labeled graphs, what 
is not standard here is the behavior of the c-forks. Normally 12" 31 they are 
constants, and therefore any derivative acting on them gives zero (such 
derivatives always arise from the Taylor expansions used to perform renor- 
malization cancellations). In the nonspherical case, however, the c-forks are 
still momentum dependent because the shape of S is not fixed by a sym- 
metry. Since the scales of c-forks are summed downward, the ordinary 
power counting bounds are insufficient to show convergence of a differen- 
tiated c-fork, and the improved power counting bounds are necessary. 

For  M > 1, n ~ N, h ~ 7/, and e > 0, define the function 

2, ,(h,e)= ~ ( [ h l + p + l ) " M  -=p (2.112) 
p = l  

Obviously, 2 is monotonically increasing in [hi and ([h[ + 1)"' 2,,(h, e) ~< 
2,,+,,(h, e). This function bounds the effect of n of the marginal four-forks 
mentioned above on the scale sum of the fork below this. The following 
properties allow one to collect the accumulated effect of such factors when 
summing scales down a fixed tree. 

Lemma 2.44. Let e > 0  and Mo(e)=2 "-/=. Then for all M>>-Mo, 
a>~e, all re, heY_, and a l l j E 7 / , j < 0 :  
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(i) L,,(J, ~) 2,,(j, e) ~< L,,+,,(J, e) 

(ii) ( 1/{ + l )" M "J2,,(/, a/2 ) ~< ( 1 - M -2/2 ) - ,  ~.., + ,,( j.  e/2 ) M ,a 
I<~j 

~22,,,+,,(j,e/2) M ~ (2.113) 

0 

(iii) 
h = j +  ! 

I) 

(iv) y 
It = j +  I 

(Ihl + 1 )"' Mh'/~-k,,(h, e/2) ~< 22,. +,,(j, e/2 ) (2. 114) 

(Ihl+l)"'M-"J'-/~2,,(h,e/2)<..2,,,+,,(j,e/2) (2.115) 

(v) At fixed n, 

with 

2,, k, ~a, ,k"+b, ,  

pl 

a , ,  = M ~  _ I 

b,,= Y" ( 2 p + l ) " M  -~p 
,o>>-1 

Proof. (i) By definition, 

2,,,( j, e) 2,,(j, e) = 
p . q = l  

(IJl + p +  1 )"' ([jl + q +  i ) "  M -~'p+'tl 

<~ ~ ( I j l+max{p ,q}  + l )m+"M -`r 
p , q ~ l  

< 2  ( [ j l + p + l ) " ' + "  ~ M -"~'+V' 
/1=1 v = l  

<~2 ~ M .... 2.,+,,(j,e) 

~<2 1 _ M _  .;L,,, +,,(j, e) 

(2.116) 

(2.117) 

(2.118) 

Since M~>~4, (i) holds. 
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(ii) Setting l = j - k ,  k>~O, we can rewrite the sum as 

M aj ~ (IJl+k+l)"'M -<'k ~ M-'pl2(IjI+k+p+I)" 
k = O  p = O  

q 

~ M  ̀ u ~ M-~ql2(lJl+q+l)" ~ M-~kl2(lJl+k+l)"' (2.119) 
q = O  k = O  

In the sum over k, we estimate each term by IJl + k + l ~ < l j l  + q +  1. 
Extending the sum over k to co, we obtain the result. 

(iii) Since for each h in the sum [hi ~< [j[, 

(I/71 + 1 )'" ,,t,,(h, El2) ~< (IJl + 1 )'" 2,,(./, el2) ~< ;,,, +,,,(j, el2) 

we have 

(iv) 

(v) 

0 

(Ihl + 1)-' Mh~122.(h, e/2) ~< 2,,+,,,(j, e/2) ~ M j'~/2 
I t = j +  I h <~0 

~< 22,, +.,(j, e/2) (2.120) 

As in the proof of (iii), 

o -, -<,(h-j) (~  ekt 
Y', ( I h l + l )  M 2,, h,~) 

h = j +  I 

h >~j+ I 

<~12-M---<,;',,+., J, 

<~ 
(22/~)" - 1 

2. k, = ~ (k+p+l )"M -~p 
p = l  

k - - I  

= Z (k+p+ 1 ) " M - W +  
p = l  

~<(2k)" ~ M-~P+ 2 
p = l  p>~l 

~, (k + p +  l)" M -~p 
p>~k 

(2p + 1)" M-~p 

<~ a,,k" + b,, 

with a,, and b,, as given in the statement of the lemma. | 

(2.122) 
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R e m a r k  2.45. Given any labeled graph G s with tree t contributing 
to the renormalized Green functions, we will now construct the quotient 
graph G' mentioned in Remark 2.16(ii) and the corresponding tree t'. We 
recall that G' is to have the following properties: G' has only two- and 
four-legged vertices, with vertex functions that are either interaction ver- 
tices or values of 1PI two- or four-legged subgraphs. The only nontrivial 
two-legged subdiagrams of G' that correspond to forks of t' are strings of 
two-legged vertices. Any nontrivial four-legged subdiagram of G' that 
corresponds to a fork of t' consists of a single four-legged vertex with 
strings of two-legged vertices appended. The significance of this in the 
inductive proof of finiteness of the infrared limit is that the scale sum over 
the scales of forks f e  t' can be easily bounded once the vertex functions of 
G' are control led--and the latter will be covered by an appropriate induc- 
tive hypothesis because they are of lower order. 

Let ~b be the root of t, and let f l  ..... f,. be all forks of t that satisfy: for 
all k ~ { 1 ..... r}, the number of external legs of GA. is two or four, and fk is 
minimal in the sense that there is no fork g such that ~b < g<fk  and Gg has 
two or four external legs. Let 7 be the tree rooted at ~b and obtained from 
t by trimming t at f l  ..... f r  (i.e., by collapsing t~, as defined in Defini- 
tion 2.27, to a leaf) so that J'~ ..... f,. are leaves of 7, with vertex functions 
Val(Gfck). The result is a graph (~ and a tree 7, such that no fork of 7 
corresponds to a nontrivial two- or four-legged subdiagram. 7 is not yet the 
tree with the stated properties because the Grk need not be 1 PI. When this 
is the case, we extend the tree further above fk to construct t'. 

Let f be one of the forks f~ ..... fr- If Gf is 1PI, f is,a leaf of t'. If Gf is 
1P reducible, then in the transition from 7 to t', f is replaced by one fork 
with some leaves above it. We now specify the procedure for getting t' in 
the different possible cases. 

If f is a c-fork with E(GD=2, Gfmus t  be 1PI, since l VaI(G)=O for 
any 1P reducible graph by the support properties of the propagator Cj. 

I f f i s  an r-fork with E(Gr)= 2 and Gf is 1P reducible, let cg be the set 
of lines l E L(Gf) such that Gf disconnects if l is cut. If all lines in ~ are cut, 
what remains of Gf falls into s connected components 0i. By the definition 
of cg, all the 0i are two-legged graphs. Moreover, they are all 1PI. Thus Gf 
is a string of two-legged 1PI subdiagrams 0, ,..., 0.,. joined by the lines in ~f, 
and 

) Val(G})(p) = S ( p ) =  T,(p) Cj,(p) Ts(p) (2.123) 
\ i = 1  

where Tk = ~ok Val(Ok). Note that the external lines of G.~ must have scales 
J~cf~ or below, while each line of cg must have scale j l  or above. By momentum 
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conservation, the scale assignments, and (2.16), all 1~ cg must carry scales 
jl=jlr=j,,ifl+ 1. Since f C j = 0 ,  (, applied to the value of such a string is 
zero, so effectively 1 - s is replaced by 1. Let 0 be one of 01 ..... 0 z. Then 0 
can be 0 =  Gg, where g is an r- or c-fork directly above f ,  i.e., zt(g) = f a n d  
~j = 1 - s or E, or 0 is a two-legged graph of root scale Js, in which case 
o~ = 1. Let us call this latter case a same scale insertion. We continue the 
construction of t' by reinstalling the fork f and adding, for every 
k~ { I ..... s}, a leaf bk above f which has vertex function Tk. Now, Grjust  
consists of the lines of ~ and the vertices b~,..., bs. 

If Gr is four-legged and 1PI, f is a leaf of t'. 
Finally, if Gf is four-legged and 1PR, remove the strings attached to 

Gf according to Remark 2.23, and add a leaf, above the fork f ,  for the 1PI 
core of Gr, as well as for each 1PI two-legged subdiagram 0i of the strings. 
The strings have the same properties as the ones discussed in the 1P- 
reducible r-fork case. 

Doing this for all of f~ ..... f,., we obtain the tree t'. By construction, 
G ' =  (~(t') has the desired properties. 

Finally, we note that if G is 1PI, G' is as well, since it is a quotient 
graph of G. 

The relation between the scale sums for G and G' is 

~.. Val(G s) = ~ Val(G 's' ) (2.124) 
J ~  f f ( t .  j )  JI ~ j t t ' . j )  

In this formula, J is as usual, but the vertices w of G' carry a scale index 
j,., as discussed in Remark 2.16. If j , , .=0,  w is also a vertex of G, and the 
associated vertex function is ~. Otherwise, j,,. is the root scale of a subgraph 
of G whose value is a vertex function in G' [given by (2.75)] and j,,, is 
summed over. For fixed j,t,,.~, the summed vertex function is 

F,,.=.~,,. ~" ~. Val(G(t,.)) (2.125) 

where ~,. ~ { 1 - ~, s for two-legged vertices associated to forks, and ~,,. = 1 
for two-legged vertices corresponding to same scale insertions and for four- 
legged vertices. The range of summation for j,,. is: a sum I<~j,.<~j,,,,.~ for 
a c-fork, a sum j . , , . l+  I ~<j,,.<0 for an r-fork or a four-legged vertex, and 
no sum at all, but j,,. = ~r=~,,.~, for a same scale insertion. The last point is 
important because these diagrams do not have 1 - { '  in front, but the 
correct factor M jr is there because their scale is fixed. For  a fork f e  t, let 

ny = I{f '  e t: f '  > f ,  (~(f') nonoverlapping, E(Gr, ) =4 ,  G r, 1PI}[ (2.126) 
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nr indeed depends only on G and t, but not on the scale assignment 
d~ J ( t ,  j). 

T h e o r e m  2.46. Let G be a graph with E(G) = 2m external legs and 
t be a tree rooted at a fork ~b compatible with G, so that (t, G) contributes 
to the renormalized effective action at scale j, G],_, ..... (see Remark 2.16). 
For I <  j <  0 and J e J ( t ,  j), let Val(G J) denote the value of the labeled 
graph G J with root scale jo = j. Let e be the volume improvement exponent 
of Proposition 1.1. Let I'ls be as in (1.44) and (1.45); recall that for 2m- 
point functions with m > l, the supremum is taken over all 2 m - 1  inde- 
pendent external momenta entering into G. The numbers of vertices and of 
internal lines of G are denoted by I V(G)I and IL(G)I, respectively. 

where 

(i) Let G be 1PI. There is a constant Qo such that for s~ {0, 1, 2} 

iVal(GJ)ls<~ QioL, C,~ ~ lv(a, ~ ( e )  lu s 2,, j,-~ M jr~ 
J~ J ( t . j )  

(2.127) 

f( 1 + e - s )  

Y,.(G) = J2  - m - s 
( 2 - m - s + e  

if E ( G ) = 2 m = 2  

if E(G) >_-4 and (~(~b) is nonoverlapping 

if E(G) >/4 and G(~b) is overlapping 

(2.128) 

(ii) Let X =  1 + W~ + W2, where W.,. is as in Lemma 2.3(iii), let K o 
and Kt be as in Lemma 2.35, U2 as in Lemma 2.42, and 

Then 

K, max {2(2 + d IP[~), 2 x/~ M2 = , M  2cl+*) M4U ~ (2.129) 
- U0 ~ 2 S 

18dKo Kl K2 X'- 
Q~ 1 - M  -I (2.130) 

will do. 

(iii) For s ~< 1 and E(G) = 2m ~> 4, the estimate (i) also holds for one- 
particle reducible graphs. 

(iv) As I ~  - ~ ,  ZJ~I~,.j) Val( G J) converges in I" I~ to a function that 
obeys the bound (i), and, for G two-legged and 1PI, S f~1  ZJ~II,.jI Val( G J) 
converges in 1. ]l. 
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Proos We take (i)-(iv) as induction hypotheses and do induction 
over the depth of the pair (t, G), which is defined as 

P = m a x { k :  3fl > f 2 >  ...  > f k  >~b 

with E(G~)~ {2, 4} for 1 <~i<~k} (2.131) 

In other words, given any leaf of the tree t, there are at most P two-legged 
or four-legged forks on the unique path between the root ~b of the tree and 
this leaf. Let JV" be as in Lemma 2.31 and recall that ~b6vU~(~(~b) non- 
overlapping. Also, call Q(G)= QIoL(a)l. 

If P = 0, G has no two- or four-legged subgraphs associated to forks 
of t, so n~=0.  Since no Gris two-legged, ~ / = ~  or i V =  {~b}, depending 
on whether (~(~b) is overlapping or not. Also, once (i)-(iii) are proven, (iv) 
is trivial, since Val(G J) does not depend on I at all for P = 0. We note right 
away that the only places where I will enter for P > 0 are in the values of 
two-legged subdiagrams through the lower limit of the scale sum for 
c-forks. 

Case 1. P = 0 ,  s - -0  with E(G)>_-4 or E ( G ) = 2  and ~(~b) overlap- 
ping. By Theorem 2.40, 

~. I Val(GS)lo 
JE J{t,j) 

~< (4/(o) IL(GII Ki M "j t(,r l(*E.*) 

• 2 1-I MD[(/t-J"'/)) l-I [ r i o  (2.132) 
J~J(t , j)  f > $  E4(G ) 

[see (2.24) for the definition of the Dr]. Since there are no two- or four- 
legged forks (except possibly $), Dry< - 1  holds for all f >  ~b. In the sum 
over JE f ( t , j ) ,  j f  runs from j,lf~ to - 1 ,  since there are no c-forks f >  
(the corresponding subgraph would be two-legged). Thus every scale sum 
is bounded by 

1 
MD"(Jt-A'"~<" ~ M-k<<" 1 - m  -~ (2.133) 

Jj>JnlJ) k>~O 

Doing the scale sums downward from the leaves of t in the standard way, 
we get a factor (I - M - ' ) - t  for every fork of t, except for $. Since every 
fork f corresponds to a subgraph of G, the number of forks is bounded by 
[L(G)]. Thus 

( 4 K o K , ) , L , a , ,  10,~o v'a' '  (2.134) ~. [Val(GS)[o <~ l _ M - i  M~ ~Jllr162 
J~ j( t . j )  
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Recalling that D~ = 2 -  m if G has 2m external legs, and that ~b r JV',~ (~(~b) 
overlapping, we obtain the statement for s = 0. 

Case 2. P = 0 ,  s e { 1 , 2 }  with E(G)>~4 or E ( G ) = 2  and C(~b) over- 
lapping. Now we apply s~<2 derivatives with respect to the external 
momenta. The derivative can act on vertices (interaction lines) or on fer- 
mion lines in the spanning tree of the graph. A bound for the number of 
targets for each derivative is thus 2 IV(G) [ -  I. Because G is connected, 
IV(G)[ ~< [L(G)[ + 1. If the derivatives act on interaction lines, their effect 
can be bounded by Iz3l,,.. By Lemma 2.3(iii), the effect of s derivatives acting 
on fermion lines can be bounded by an additional factor W.~.M -'J,, where 
j~ is the lowest scale at which the derivative acts. Moreover, the value of 
the differentiated graph can be bounded using Theorem 2.40, since all sup- 
port properties remain the same as before. 

If G(~b) is overlapping, we use M -j, <<. M - j  to bound 

2 
J e A t ( t , j )  

I VaI(GJ)I.,<~K~(4Ko) tL~a~t [(2 IL(G)[ + 1) X] 2 IoI.,V ~c~ 

• M~~176 ~ 1--[ M~162 
J ~  ,y{ t , j )  f >  q~ 

<~ Q(G) lOlL v~a'~ g~~ e) (2.135) 

as before. If (~(~b) is nonoverlapping and E(G)/>4, a similar bound holds 
without the e. So far irreducibility has played no role, so (iii) holds for 
P = 0 even with s = 2. 

Case 3. P = 0 ,  E ( G ) = 2 ,  and (~(~b) nonoverlapping, s e { l , 2 } .  Now 
(~(rr is a nonoverlapping two-legged graph. It is 1PI because it is a 
quotient graph of the 1PI graph G. Let s~>l. By Remark 2.41, the 
derivative does not act on lines of d(r~), but only on lines with scale 
~>j*(~b), where j*(~b) is the lowest scale above to, as in Theorem 2.40, so 
its effect can be bounded by a factor X"M-SJ*~( If r~ = t, then j*(~b)= 0, 
and the derivative can act only on the interaction lines or lines of scale 
zero. Otherwise, by Theorem 2.40, we have a factor M "j*(*~. Since s ~> 1/> e 
and 0 ~>j*(~b) >~j', 

M-~s-  E) J*I~) <~ Mle -  s)J (2,136) 

and we again obtain the bound (2.135). Note that if the derivative acts only 
on interaction lines, the bound is true since 1 ~< M ~- 'u .  

Case 4. P = 0 ,  E(G)=2,  and (~(~b) nonoverlapping, s = 0 .  We use the 
representation (2.92) for VaI(G J) and Lemma 2.42. Pick a string $1 that 
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contains a line of scale j. This is possible because C(~b) is nonoverlapping. 
Recall that j is the root scale, hence the lowest possible scale for any line 
of the graph. Let 

g(Pt, q),,,~,,,,,##' 

(~ iJ i r  { | .  ml } i = 2  

d + l  (d Pi (S,(p,))~,,,_,+,,,) 

x(q/,,,)=, ....... ,_,#~,, .... ~,,,-2#'(Pl ..... P,,,,-t,q, Pt ..... P,,,,-t) 
Then 

(2.137) 

Vj=(Val(GS))pp'(q) ~ f da+tp = (S,(p))~,~,, g(p, q),c~,##, (2.138) 
eq ~" 

The string St can contain only insertions at scale j, i.e., vertices with 
generalized self-contractions of scale j because P = 0. So 

I 1 - -  ] 

S,(p)=Cy(po, e(p))"'Cj+t(Po, e(p)) ...... l--[ T,,.(p) (2.139/ 
I t ' =  t 

with m/> 1, and where the T,,. are values of 1PI two-legged subdiagrams 
with root scale precisely j, and which are nonoverlapping on scale j (those 
are not excluded by P = 0  because we did not use normal ordering). In the 
notation of Lemma 2.42, 

Vj= ~:~ r dr f]~dep (irei~.)-. f(M-2Jr2)m f(M-2J-2r2 ) ..... 

with 

x fs&O ((~(r cos ~o, r sin ~o, co) - ~ ( 0 ,  O, co)) (2.140) 

1 1 - -  t 

ck(po, p, co) =J(p, co)g(po, p(p, co), q) I-I T.'(Po, P(D, CO)) (2.141) 
i t . ~  t 

[as in Lemma 2.42, j d(p e-/"~b(0, 0, ( o ) = 0  because ~b(0, 0, (o) does not 
depend on q~]. By Taylor expansion, 

V j = f :  r2 dr i~d~o(ire'~')-,, f(M-2Jr2)m f(M-2j-2r 2) ..... 

x &o dt(cos~oOo+sinq)Ot)q~(trcos~,trsinq~,co)) (2.142) 
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As in the proof of Lemma 2.42, the extra factor of r gained by Taylor 
expansion alone would improve the scale behavior by a factor M j. 
However, there are now derivatives acting on either J, or g, or one of the 
T,,.'s. We consider all these cases separately. 

If the derivative acts on J, we use Lemma 2.1(iv) to bound IJlt. 
Moreover, we can use the inductive hypothesis (IH) (proven as case 1) for 
the four-legged graph F whose value is g to bound 

]glo <~ Q(F) ~ vr (2.143) u 0 

Thus this contribution to Vj is 

n - -  ] 

I? f+ ~<lJI, Iglo H IT,,.10 drr2-" f (M-+r  2) &o 
w =  l 

r t - - I  
(2 .1~)  

<~ M2jM2" IJl, Q(F) ~ Iv~r,I Iv o I-[ ( IT , , . I og - ; )  
w =  l 

The root scale behavior of the two-legged graphs is (applying the IH to 
their external vertex and the power counting hounds for the propagators) 
Q,. lelg V~T''l M J, so the statement follows for this term. 

If the derivative acts on one of the T,,.'s, it can act only on an inter- 
action line, or on a scale where the two-legged graph overlaps. Thus, 
bounding its value by the IH (proven as case 2 or 3), we have 

IT,,. l, <~ M+JQ,,. 1el I V< T'.'~ (2.145) 

so the contribution from this term is bounded by 

n - -  I 

<~Mj~,++,M2,, IJIo Q(F) IC, I~oV, F,~ [-[ (Q,,. O[Mv~r,,.+t~o , (2.146) 
lip = I 

If the derivative acts on g, it affects only q/,,,. There, It can hit any line of 
scale j *  or higher, where j *  is the scale at which G overlaps, or an interac- 
tion line. We now wish to use the argument of Theorem 2.40 to extract the 
volume gain. The crucial step in this argument, as applied to the current 
situation, is bounding the two overlapping momentum loop integrals 

Y= sup f dap~ f: '  dr fs &o S(M-2J, "2) l(le(pl)] < M  j') 
q , ~ , t  

• l(le(v~ Pl + v2p(tr sin ~b, co) + q))l < M J*) (2.147) 

Here Pt is the spatial momentum of a loop of ql,,~, the two factors 1( ... ) 
come from the cutoffs on two lines of that loop, the integrals over r and 
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co come from the momentum integral (2.142) for the string S l ,  and the 
factorf(M-2Jr 2) comes from the cutoff of one of the lines of S~. This two- 
loop integral is not quite of the form of Proposition 1.1, with the most 
serious difference being the appearance of p(tr sin ~b, co) in place of p(r, co). 

However, writing p~ = p(p~, co I), doing the same Taylor expansion as 
at the beginning of Appendix A, and using that in the support of the 
integrand, r <~ M y <<. M j*, we get 

1( le(v~ Pl + v2p(tr sin ~b, co) + q))l ~< MJ') 

<~l(]e(vlp(O,O)l)+v2p(O, co2)+q)l<~(l+2lel ')M (2.148) 

so that 

q,~b.t S--MY" 

Uo / 

with W the function defined in Appendix A. So by Lemma A.1, the integral 
is bounded by CvotMJM/*M ~/~ Substituting this into the proof of 
Theorem 2.40, we find that the term in which the derivative acts on g is 
bounded by 

n - -  1 4Ko ,~,L(F), M2nMt3- n) j  <~M~J'M-J*W1K' I - M - ' J  It~llV~F)l I-[ IT,,,Io 
i 1 .~  1 

(2.150) 
( 4Ko )'L'F~'IOllV, F,,"-' ,v,r.,, I ~MII+~JM2"WIKI I _ M - ~  1-I (Q,,.IOlo . 

Collecting the constants into the U, mentioned in Lemma 2.42, this proves 
the statement for case 4. 

Now assume P>~ 1 and (i)-(iv) to be proven for all P' <P .  Construct 
the graph G' and its tree t' as in Remark 2.45. Recall that, by construction, 
G' has only two- and four-legged vertices. Furthermore, any two-legged 
subgraph corresponding to a fork must be a string of two-legged vertices 
and any four-legged subgraph corresponding to a fork must consist of a 
single four-legged vertex with some strings of two-legged vertices appended. 
Recall the definition of the vertex functions F.. and the scale sums involved 
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therein from Remark 2.45. By construction of G', all graphs (~(t,.) whose 
values V,. appear in the definition of F,. are 1PI and two- or four-legged, 
and they are of depth at most P - 1, so the inductive hypothesis applies to 
them. Our procedure is to estimate the norms of [F,.[, for s e  {0, 1} (and, 
when F,. is four-legged, for s = 2) first, using the inductive hypothesis, and 
then to apply this to complete the induction step using the case P- -0 ,  
since, by construction, G' has depth zero. We abbreviate 

Q,. = Q(G(t,.)) I~1~ v~"''',l 

and call n.. = n I if w comes from the fork f e t. 
Let F.. belong to a c-fork. Then 

IF,,[~. = s [ ,~i  V,,. s (2.151) 

For s = 0 ,  by [l'Tlo~<lT]o, the inductive hypothesis (IH), and Lemma 
2.44(ii), 

Jn,,,.) I / e ' ~  J, YO 
IF,,.Io<~Q,,. ~. 2 ..... j , . , -  U " j,,=, (, 2J 

~< 2Q..2 ..... j..,.~, ~ (2.152) 

If s = 1, we use IfTl~ ~ (1 + d IPI~) I Tli,  where d is the spatial dimension, 
P is the projection onto S, and IPll =max/IP,.I~, then 

jn( .. ) 

If , .[,  <~(l + d l P I , )  ~ IV,,.I, 
j . ,  = I 

 Q"(l+dlel')jZ, x,.= ..... J.., M j,,.y, 

<~2Q,,,(I + d I P I , ) M ~ " ' " 2  ..... j.,,.~ (2.153) 

by Lemma 2.44(ii), since Y, =e. 
If F,. belongs to an r-fork, then 

IF,,,Is= (l-E) ~ V . ,  s 
J . '  > Jn l . ' )  

(2.154) 

822/84/5-6-27 
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For s = 0 ,  by (2.37), and because the momentum p flowing through (~,. 
must be in supp Cj,,..), i.e.. lipo-e(p)l ~<M j''~+-', 

IF..Io~ Z MJ='')+2~--~21V,.[, 
j w  > Jno,') U0 

- - M  j"`') ~ 2,,, j.., 
r i o  J),' > Jnl,,,) " 

- -  M J"(")2 J,~o,'l, "~ 
n o  nw 

M j,,.~ 

by Lemma 2.44(iii). 
For s = 1, w e  ignore the r e n o r m a l i z a t i o n  ga in ,  a n d  bound 

I ( 1 - t )  v..I, ~<(2+dle l~ ) Iv . . I ,  

Inserting the IH, the scale sum is as  in the  s = 0 case ,  a n d  

'F,. [ ~ ~ ( 2 + d IPI , ) 2Q,.2,,,,. ( j,,(,.,, 2 ) 

If F,. belongs to a s a m e - s c a l e  inser t ion ,  j , . =  j,,(,.), a n d  so  

[F,,.I.,.<~ Q..),,,,,. (j,,.,.), 2) MJ"'')Y~'~ 

for all s ~< 2 follows directly from the IH. 
If F.. belongs to a four-legged fork of t, the IH implies 

'F,,.'s<<. Q,,. ~ 2,,. (j,,., 2) M-~'"r'(~('"") 
Jw > Jn{~,') 

Bound 

M*" ); ~< M-&'")M roz, 

If (~(w) is overlapping, Yo =e,  so by Lemma 2.44(iii), 

( e ) M - . , J , , , , . )  IF,,.I.,<~2Q,,.2,,, j,,(,,.),~ 

(2.155) 

(2.156) 

(2.157) 

(2.158) 

(2.159) 

(2.160) 



Perturbation Theory Around Nonnested Fermi Surfaces 1295 

If (~(w) is nonoverlapping, Yo = 0, and the scale sum grows logarithmically, 
i.e., as [j,,,.I i, and 

( e ) M - S J " ' "  (2.161) IF,.I.~<~a,.2,,,,+, j,,,.~,~ 

In summary we have for s ~< 1 the bounds 

,F,,.I.,.<<. Q,K2MJ"''"'-"'2,,,, (j,,,.,,2) (2.162) 

for the vertex functions of two-legged vertices w of G', and for all s ~< 2 the 
bounds 

,F,,.I.,. <<. 2Q..M-~J'"2~.. ( j,,,.,, 2 ) (2.163) 

for all four-legged vertices w of G', with 

(n,,. if (~(w) is overlapping 

n'" = '~(n,,. + I if G(w) is nonoverlapping 
(2.164) 

We return to G' and complete the inductive step. Choose a spanning 
tree T' as in Lemma 2.35(i) for G' and fix the momenta, to obtain Val(G':) 
in the form (2.83), with the "7[,,. given by the F,,. in the present case. 

Case 5. P > 0 ,  E(G)>~2, and C(~) overlapping, s~{0,  1}. Let q be 
an external momentum of G, and denote 0 a = O/aqp. Then 

8~VaI(G'")=~ ~ f l-I dd+lPl l--[ 8~'Ch((P,)o,e(Pz))A, 
cr spins a I E L I G ' ) \ L I T ' )  l e L ( G ' )  

X H ~a. 'K'  I n  (w) r~ (w) n("')~ ~a..~C' /n(w)~ 
vf l  --n '~/"l  , Y 2  ~1"3 tA . .  1-'I ~/1 - - w ~ F  , 'A. 

~t'E V4(G') . ' ~  V2(G') 

(2.165) 

where the A denote the spin assignments for vertex functions and 
propagators, as defined in the graph rules. Here a: L(G')u V(G')--, {0, 1} 
keeps track of which factor gets differentiated, so exactly one of its com- 
ponents is nonzero, Z~ a~ + Z,,. a,,. = 1. To count the number of terms in the 
sum over a, observe that a/~Cj = 0  if 16 T'. Since IL(T')I = V(G')- 1, the 
sum over a is bounded by 2 IV(G')I times the maximum of the summand. 
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(~(~b) is a quotient graph of G', so G' is overlapping. Applying Lemma 
2.35(ii), using (2.162) and (2.163), and bounding M -sj"'''~ <~ M -'~, we obtain 

max la a Val(G'S)l 
# 

<<.K,(4Ko)tL(~ X ~ Q., 
w~ V{G') 

X M j Ie+or  E M D t t G ' ) ( J / - - J ' / I )  ~ [  

f a t '  wE V2IG') 
f>~ 

. '~  V4IG') 

(K2 M/.,,,')) 

(2.166) 

By (2.24), since G' has two- and four-legged vertices, V(G'[)= ~(Gfc)+ 
V4(G'f), so 

Df(G')=L(G')-2(V(G')- 1) = �89  V2(G'r) (2.167) 

By Lemma 2.44(i) and the definition of n~, 

)i'E V4tG') 

(2.168) 

Using the telescope formula (j~ = j )  

j ,m,,)=j4,+ )--:. (jf--j,,(f))=j~+ ~ (Jf--J#(f)) l(weG~s) 
f a t '  . f~  t '  

q~ < f  ~< n{)r) f > q /  

we get 

(2.169) 

Z j .( . .)=j~IV,(G')[+ ~ (jr-J., .r)  Z I(w~G~/) 
)r~ V2IG') f ~ t" . 'E V2IG') 

f>4, 

(2.I70) 

SO 

1--[ MJ"")=M)§ 1-[ MU/-/~c"))lv:(~JII 
)r~ V2(G') f a t" 

.f> 

(2.171) 

and we see that all Df(G') get renormalized to 

D~rR)(G ' ) = Dt(G') + V2(G'/) = �89 -E(G'[)) (2.172) 
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Inserting these estimates into (2.166), summing over J~J(t,j), and 
remembering (2.124), we find 

I Vat(G')l, 
J ~ J ( t , j )  

<~(2dlV(G')l Y +  l) K~(4Ko)lL(c'>M K[ V<c'~l I-[ Q.. 
w ~  V(G') 

xM"~-'+D'~"'(c"2"' (J' 2) ~ 1-I MD'*"'(a')IJ'-"'") (2.173' 
J E / ( t ' , j )  f ~ t '  

. f>~ 

We are now back to the case of zero depth, since, by construction, i f f  is 
a two-legged or four-legged fork for G', then if= J~(f) + 1 by conservation 
of momentum. So there is no corresponding scale sum and the last scale 
sum is now identical to that of the case with zero depth. It produces a fac- 
tor (1 - M  - I  ) - i  for all forks of t' with E(Gy)> 4, except for q~. The product 
of the various constants is now again bounded by Q(G), since the number 
of lines of the subgraphs G,. and that of G' add up to [L(G)I. Finally, we 
note that IR) D, (G')= �89 This proves (i) and (ii) for s ~  1 
and also (iii) since we have used the assumption that G is 1PI only to 
bound [ V(G)[ ~< IL(G)l. For  general connected graphs, [ V(G)[ ~< [L(G)I + 1, 
which only changes the constant. For  s = 2 we will need the 1PI assump- 
tion since we cannot afford to have two derivatives acting on c-forks. 

Case 6. P > 0 ,  E(G)>~2, and (~(~b) overlapping, s=2. For s=2, we 
have to apply another momentum derivative to (2.165). It can act again on 
at most 2V(G') targets. However, we have to avoid having two derivatives 
act on an F,,. coming from a c-fork because the scale sum down to I would 
diverge as I ~  - m  in that case. Whenever the second derivative acts on 
the same two-legged vertex as the first (no matter  whether this vertex 
comes from a c- or an r-fork), we remove it by integration by parts as 
follows. Since G is 1PI, so is G', so the momentum through any two-legged 
vertex is a linear combination of momenta,  at least one of which is a loop 
momentum p. So we can rewrite the derivative 

0 0 aq--~ T(p +_ q) = +_ ~ T(p +_ q) (2.174) 

Integrating by parts with respect to p distributes the derivative on at most 
I V [ -  1 other lines and at most V vertices. Using (2.162) and (2.163), the 
estimate follows as in the case s~< 1, but with the constant (2[VI X) 
replaced by (21V] X) z because there are more terms in the sum, and 
because the derivatives can now act on two C's. 
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Case 7. P > 0, E(G)~> 4, and (~(~b) nonoverlapping. Just delete all the 
M ~j from cases 5 and 6. 

Case 8. P > 0 ,  E ( G ) = 2 ,  and (~(~b) nonoverlapping, s = 0 .  We 
proceed as in the case P = 0 .  The value of G again takes the form of 
(2.137)-(2.139), but with the T,. replaced by 1PI insertions with values F,,. 
[see (2.125)] on the strings S; of G(t~), where F,,. may now belong to a 
c-fork, an r-fork, or an SSI. If F,,. belongs to a c-fork, the additional M ~j 
can be read off (2.152). Since the scale of an SSI is fixed, the additional M ~j 
follows directly from the IH. Thus if any c-fork or SSI is on the string, the 
statement follows immediately. 

There remains the case where all insertions on the string are r-forks, 
i.e., ~,,.= 1 - s  in (2.125). Then the value of G is given by (2.111), with 
k = n -  1 (only r-forks), and with ~b and A,. given by (2.106) and (2.103). 
The derivative O/Or acting on ~b in (2.111) can act on J, or on y, or on the 
A .... similarly to case 4 above. 

If the derivative acts on J, IJIl<~Al/uo, and by Theorem 2.46(i) 
(proven as cases 5 and 6 above), 

lyI~ ~< Igl~ ~< Q(F)t2'lV~F'lM~/2"~"lf(J' 2) (2.175) 

with F the four-legged graph whose value is g. The insertions to which the 
A,,. belong are of depth ~ < P -  1, so by the IH and (2.103), IA,, Io is bounded. 
Thus this contribution is bounded by Q(G) I vr~ vlall 2~(j,  c/2) M-'J. 

The case of the derivative acting on y(r, cp, co)=g(rcos~o, 
p(r sin q~, co)) is completely similar to that given in case 4. 

If the derivative acts on one of the A,,., we apply the IH for s = 2 to 
the two-legged graph of depth ~< P -  1 that produces A,,.. The gain of M ~j 
follows immediately from the IH. This completes the induction step for 
case 8. 

Case 9. P > 0 ,  E ( G ) = 2 ,  and (~(~b) nonoverlapping, s~{ 1 ,2 } .  If 
s =  1, we choose the spanning tree constructed in Lemma 2.38; then the 
derivative with respect to the external momentum can act only on the ver- 
tex function u?[,,,. Since the volume improvement is at the same scale, the 
statement follows even without an application of Lemma 2.42. If s = 2, at 
most one derivative can act below j*(~b), and that happens only if it has 
to be rerouted to avoid having two derivatives act on a single c-fork. 
Bounding it by M - j  and then proceeding as in the case s = 1, we arrive at 
a similar bound. 

Finally, (iv). The effective vertices in G' have vertex functions that 
depend o n / ,  and that converge as I ~  - o o  by the IH. Since the scales of 
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r-forks and four-legged diagrams are summed over a region that  does not  
depend on L and since a same-scale insertion has no scale sum at all, (iv) 
will be proven if we can show that the scale sum for a c-fork, which runs 
from I to J,~cf~, also converges as I--* - oo. Let cg be the Banach space 
( C l( [ _ 1, 1 ] x ~ ,  C), I" I, ). The  sequence g+ = ( g,+,),, .<o given by 

, f E s , / , t  .... ,Val(Gs.) if ne{I , . . . , j , , , . ,}  (2.176) 
g ' = ~ 0  " " otherwise 

is an element of  the space t ~(Z_,  cg) by (i). By the IH applied to G,,., there 
is (g,,),,~o such that  gZ~g,,  in I ' l l  as I ~  - o o ;  in other  words, g i ~ g  
pointwise as a sequence. Let f~E~(2~_ ,c~)  be the sequence f , , =  
M~"Q(G,,.) 2,,,.(n, e/2); then 

IlgZ[I +'lL.~e> ~ Ilfll~,~L~ (2.177) 

for all I <  0. By dominated  convergence, g s {  I ( Z _ ,  cg) and 

IlgZ-gll+,,~_.~e, = ~ Ig~-g,,l~ ~ 0  (2.178) 
n ~ 0  

as I ~ - o o ,  so ~,,+II....,j,,,.~F,, converges in I ' l l ,  which shows that  
Y~= Zs+l~,,j~ Val(Gs) converges in I' I~ as I--* - oo. Morever ,  if G itself is 
two-legged and 1PI, 

ly/L ~< cpj= M~JQ(G) 2,+(j, e/2) (2.179) 

Now repeat the dominated  convergence argument  for the ~ to see that  
~j~i  Y/also converges as I--* - oo. II 

Theorem 2.46 contains the most  impor tant  information,  that of the 
renormalizat ion flow of the two- and four-legged, i.e., relevant and 
marginal, effective vertices. For  overlapping four-legged graphs, the bounds 
show that  the scale behavior  is not  marginal,  but  irrelevant in the usual 
language of the renormalizat ion group. The convergence as I - - * -  oo 
allows us to view the flow of effective actions to the uncutoff  limit G j. z,,,. ~ = 
l i m ~  _ ~ G~ ,,,. ~. 

T h e o r e m  2 .47 .  Let I1'  be as in (1.46), n~ as in Remark  2.45, and 
let (t, G) be fixed. Let 

II. [I = { 
�9 [~ if E ( G ) = 2 a n d G i s l P I  
[ o if E(G) = 2 and G is 1 P-reducible, 

or E(G) = 4 and (~(~b) is overlapping 

�9 I' otherwise 

(2.180) 



1300 Feldman e t  al. 

Then 
- I  

v,(t,a)=Z Z Va/(6 ) 
j = l  J ~ J l t ,  j) 

converges in I[" [I and satisfies 

IP lim VAt, G)II ~<n~!-const It(c)l (2.181) 
I ~  - -oO 

Proos For E(G)=2 ,  or E ( G ) = 4  and (~(~b) overlapping, the state- 
ment follows from Theorem 2.46 by summation over j, noting that for 
o~>0, 

M~J2,,(j, e/2) ~< 22.(0, e/2) ~< const"- n! 
j < O  

(2.182) 

It remains to show the bound in [. ['. Construct t~ and 7 as in Remark 2.45. 
The two-legged vertices of (~ are either strings of vertices of G' or c-forks. 
By Theorem 2.46, the scale behavior is 

T,,. ~< const L"- 2,,,,(j,(,.), e/2) M j"''' 

for two-legged vertices and 

F,,. ~< const L''. 2e,,.(j,(,.), e/2) 

with fi,,. = n,, if (~(w) is overlapping and ~,,, = n,,. + 1 if it is nonoverlapping. 
Inserting the second part of Lemma 2.4 and Lemma 2.44(i), it follows now 
as in refs. 2 and 3 that the scale sums ~J~1(,,J) Val(G") converge as I-* az, 
and that they are uniformly ( in/ )  bounded by a summable function 
in j. The convergence as I ~  -oo  now follows by imitating the proof of 
Theorem 2.46(iv), using L I ( ( [ - 1 ,  1] x ~ )  " - I  x {T, J.}", C)instead of Cg. ] 

Remark 2.48. The convergence statements of Theorem 1.2 follow 
directly from this, recalling that the graphs contributing to Z and K are 
1PI and two-legged, and that the sum over trees t at fixed G is always 
finite. Under the hypotheses of Theorem 1.3, n~ = 0 for all t that are com- 
patible with G, so, taking into account the 1/nf! to bound the sum over 
trees by const', Theorem 1.3 also follows. The local Borel summability 
bound requires an adapted induction scheme that combines the summation 
over trees with the bounds of Theorem 2.46, using Felder's Lemma. We will 
not repeat the proof here; it is similar to the one given in ref. 2. 
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Remark  2.49. Theorem 2.47 states that the value of every four- 
legged graph that is overlapping on root scale converges in the sup norm 
to a continuous function. The only four-legged graphs that may produce 
a singularity in the four-point function are thus the nonoverlapping 
four-legged graphs. By Lemma 2.26, these are the ladder diagrams. The 
"dangerous divergences" mentioned in many places in the literature are 
those of the four-point function. Their "danger" is that they can produce 
factorial growth of the value of individual diagrams when they appear as 
subdiagrams and thus may prevent convergence of the renormalized expan- 
sion in ). (even though every order is now finite). Theorem 2.47 shows that 
for our class of models with a nonnested Fermi surface, these "dangerous 
divergences" can only be produced by dressed ladder diagrams, so that it 
suffices to investigate them to see whether r factorials in the value of 
individual diagrams of order r appear. 

3. THE  D E R I V A T I V E  W I T H  R E S P E C T  TO THE 
B A N D  S T R U C T U R E  

Let D~, be the directional derivative with respect to e, as defined in 
(1.51). It is obvious from the formula for the value of graphs and the way 
e appears in the propagators and in the projection that for a fixed infrared 
c u t o f f / >  -0% all Green functions have bounded Dh, and, moreover, their 
multiple derivatives with respect to e exist as multilinear operators. 
However, the norms of these operators diverge as I ~  -oo .  In this section 
we show that DhK~(e) converges as I ~  --oo, and that Kr = limi~ -oo Kr ~ is 
differentiable in e in the sense of Fr~chet. To get bounds that are suitable 
for removal of the cutoff / ,  we have to rearrange some contributions that 
appear divergent at first. 

To motivate why there is a problem taking this derivative, we first 
�9 " - - 2 j  "~ explain how it affects power counting. Abbrev la tmgf(M - (p ;  + e(p)2)) = 

s we have that the derivative 

obeys 

( fJ(P) ,+ 
D,, Cj(Po, e(p)) = \.(ipo----~-p))~S 

2M-~e(P) fJ(P)~ h(p) 
ipo - e(p) ] 

(3.1) 

IDt, Cj(po, e(p))l < const.  M -2j l(lipo--e(p)l �9 [ M j-2'  MY]) Ihlo (3.2) 

which is a factor M - j  worse than the usual scaling behavior of Cj [Lem- 
ma 2.3(iii)]. By power counting, a two-legged graph on scale j behaves as 
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M j, so Dh removes the decay and seems to make the scale sum marginally 
divergent. Similarly, D~, also acts on the projection • and can upset renor- 
malization cancellations. 

In brief, taking a derivative of 1/(ipo-e(p)) effectively produces a 
square of the denominator, which, as discussed in the Introduction, is not 
locally integrable. The problem that the infrared singularity gets stronger 
when derivatives are applied also appears, for example, in Euclidean field 
theory with propagators singular at zero momentum, when differentiating 
with respect to a mass in the infrared. 

However, the singularity of the propagator is on a surface in our case 
and this makes a big difference under the nonnestedness assumption A3. 
The improved power counting estimate implies that for contributions from 
graphs that are overlapping on root scale, the scale sum is actually still 
convergent because of the volume improvement factor M "j, so that for these 
graphs, ~jD  h VaI(G J) converges. For  contributions from nonoverlapping 
graphs, one has to apply an integration by parts similar to Lemma 2.42 to 
show that the scale sum still converges. So the derivative of K is convergent 
without any further insertions or counterterms, because of the geometry of 
the singularity. The two above observations will be used to treat general 
labeled graphs using Lemma 2.31. Note that in contrast to derivatives with 
respect to the external momentum, where momentum routing implied that 
lines in the nonoverlapping parts of the graph are never hit by such a 
derivative, derivatives with respect to e will affect all lines, and it requires 
a separate argument to remove Dh from lines in the nonoverlap.ping parts 
of the tree. When taking norms, there will be several subtleties which we 
discuss in detail below. 

3.1. Integration by Parts 

We start with the simple observation that if FE C'(•,  C), then Foe: 
.~ --* C satisfies 

OhF(e(p)) = F'(e(p))  h(p) (3.3) 

and 

VF(e(p)) = F'(e(p)) Ve(p) 

Thus, choosing ~ as in Lemma 2.1(iii), for ps~/a(S), 

Dh(F'~e)=( h--~(~"F)~ 

(3.4) 

(3.5) 
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where @,, = u. V, as in Lemma 2.7. Since supp Cj c qLdS) for all j ~< -1 ,  

h(p) (~,,Cj)(Po, e(p)) Dh Cj(Po, e(p)) - ~,,e(p) (3.6) 

and this rewriting introduces no singularities since [u. Ve(p)]>~Uo. 
Obviously, then, for X e C ' ( [ - 1 ,  1] x ~ ,  C), 

I d"p X(p) DhCj(po, e(p)) 

and thus 

where 

(h,, x7 = --f ddp Cj(po, e(p)) V. \~,,e / (p) (3.7) 

-f cjxv.(h")+ f c/i,x I381 
�9 \~ , ,e /  J~ 

3hX= D h X - - +  ~,,X (3.9) 

By the definition of3h, 3 h F = 0  for all F(p)= b(po, e(p)) and all h. In par- 
ticular, 3hCj(p)=0. Note, however, that for F(p)= Cj(Po+qo, e(p+q)) ,  
3/,F will not be zero if q :# 0. We shall only use integration by parts for non- 
overlapping graphs, so by Remark 2.41 such shifts by additional momenta 
q will not occur. Moreover, Xwill be given by (2.93), so, to get the integra- 
tion-by-parts formula, we only have to give the derivative ofd. 

k e m m a  3.1. Let u be fixed independently of e, so that D~,u=O. 
Then 

_ l (  h', ) 
DhP(q) = h(P(q)) u(P(q)) = \@,,e/(q)  

@,,e(P(q)) (3.10) 

Dh({T) = [3h T 

On Ua(S), 6hg=d3h and thus 3 / , ( 1 - [ )  =(1 -Y)3/ , .  

Proof Fix qe~ Changing e to e+~h moves the Fermi surface. 
The new surface is S =  {p: ( e+~h) (p )=0} .  h is bounded, so for ct small 
enough, S c qla(S). By assumption, changing e does not change the curve 
), used to define P(q), since y is an integral curve determined by u and q. 
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What changes is the intersection points of y with S. Since this point moves 
on ?, and y is an integral curve of u, 

Oh P(q) = flu(P(q)) (3.11) 

with a function fl = fl(e, h, u, q). Inserting this into the equation 

0 = Oh(e(P(q)) = h(P(q)) + Ve(P(q)) - DhP(q) (3.12) 

we obtain f l=  -g'(h/@,,e) and thus the statement for P. 
Since ( fT) (q)=  T(0, P(q)), 

Dh~T(q) = (Dh T)(O, P(q)) + VT(O, P(q))- OhP(q) 

= ( f D h T +  f VT .  DhP)(q) (3.13) 

which, by the formula for DhP, implies (3.10). On U,~(S), ~ , s  by 
Lemma 2.7. Thus for q~ U,~o(S), 

(ShET)(q) = (DhET)(q) = (s T)(q) (3.14) 

The statement for 1 - f  is obvious. I 

R e m a r k  3.2. Allowing u to vary with e would have given an addi- 
tional term parallel to the surface. Since that term vanishes linearly on S, 
it can be included without any problems, but the resulting expressions are 
more complicated. For our purposes, keeping u fixed is enough. Indeed, for 
the bound without V acting on h, it is necessary since the additional term 
contains Vh. 

To use this for strings of two-legged insertions, we write the string of 
(2.93) as S , (p )=  Cj,.,(p). Yi(P) with 

I|* i 

Y,= I--I (~.kT,.k) Cj,.~+, (3.15) 
k = l  

and note that for j~.k ~< -1 ,  the momentum p~#/ao(S), so that Lemma 3.1 
applies. Since gh Cj,.k = 0 for all k, 

I1' i I1" i 

dt, Y~= E 1"-[ (~.~-T'i.k.,) CAk+, (3.16) 
I = 1  k = l  

where 

, {CJhTik if k = l  (3.17) 
T i ' k ' l  = Ti.k " if k ~ / 
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We denote 

S~(p) = Cj,.,(p). 6h YAP) (3.18) 

k e m m a  3.3. Let G be a nonoverlapping, 1PI, two-legged graph as 
in Lemma 2.38 and v I its external vertex. Then 

D,,( Val( GS)( C, ql,,, ..... qi,,,) )pp. (q) 

= ( Val(GJ)(C, D,,ql,,, ..... qlL.,l)pp, (q) 

n l  - -  I h i - -  1 

+ ~ ~, f 1-I ( ad+ 'p, (S,(p~))~,,,,+,~,,) 
I = I ( r  i i =  I 

i ~ l  

, 1, .v,,) 
x ((St(Pl))~.,+m- (Sl(Pl))~,., +m V. \N,,eJ (Pl) - ~ , , e  u(pl) 

x (~ ..... ,_,/~,,~+~ .... ,..,_,p'(Pl ,P2 ..... P,,,- i, q, Pl ,P,_ ..... P._,,,-i) 
(3.19) 

Proof. For every string S,. attached to v,, use (3.15) and integration 
by parts 

f dpl X(pl) DhSl(pt) 

= f dp, X(p,)6, ,S ,(p,)+ f dp, X(p,) 

= f dp, X(p,) S ; ( p , ) -  f dpt X(pl) St(p,) V . - -  

hu . VX(pl) - f dpl Sl(pl) ~,,--~ 

h(Pl) " " VSt(pl) 

hu 

to remove all derivatives from propagators. The momentum derivatives 
acting on "Tt,,,., and the additional summands all arise from integration by 
parts. | 

Remark 3.4. Less formally, one can say that after applying integra- 
tion by parts, no derivative acts on a propagator of G, and that all 
derivatives act as 6h on functions associated to higher forks in the tree, i.e., 
one of the Ti.k in the strings gets differentiated in the terms in (3.19). If 
Ti., = T is again a nonoverlapping graph, it is a string of GST graphs; since 
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5~,C i = 0 ,  the derivative only affects 1PI subgraphs, which are then GST 
graphs, and we can again apply Remark 2.41 and Lemma 3.3. For the 
momentum derivative contained in 5, we will apply Theorem 2.46 directly. 
For the D h contained in 5 h, we apply (3.19) again, to avoid having the 
derivative act on lines. This procedure can be iterated according to the 
recursive structure of the GST graph G, and all of ~?l~,,~ ..... 0#% get differen- 
tiated in this procedure. This can be used to make all derivatives act on 
higher, overlapping parts of the tree, where the factors M -j  they produce 
are controlled by the improved power counting factors M ~j. So, the upshot 
of (3.8) is that things can be arranged such that the derivative D h also does 
not act on lines in the nonoverlapping part of t(G J) (as was the case for 
derivatives with respect to external momenta). However, because of the 
way integration by parts was done here, the price paid for this is that 
IVhlo, not only thlo, appears in the bound. The integration by parts is 
similar to the Taylor expansion in Lemma 2.42, which also produces Vh 
terms when used on a string on which a factor of h from a D h Cj sits. 

3.2. Bounds for the Directional Derivative 

We now show convergence of the directional derivative and a bound 
that contains only Ihlo. Some parts of the proof will be subtle, and there- 
fore we illustrate the two procedures for the lowest order contribution, 

--1 --I 

F(q)= ~ Fj(q)= ~ fda+lpO(q--p)Cj(po, e(p)) (3.20) 
j = i  j = t  

We want to bound 

-1 

D,,F(q) = f d "+ 'p ~(q--p) ~. DhCj(po, e(p)) 
j = l  

(3.21) 

To get the bound in Ihl,, we use (3.6) to write 

h(p) (u.V) Cj(po, e(p)) D,,Fj(q)= I d'+ 'p v ( q - P ) ~  (3.22) 

and integrate by parts, to get 

h(p) u(p)) (3.23) 
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and bound by (2.21), (2.22), and Lemma 2.1(ii) 

1 ( 1  + lelz~ (3.24) IOhFjIo<~go MJ" I~1," Ihl, lul, Uo no / 

Thus, the scale sum converges absolutely if one allows a derivative to act 
on h, which gives 

IDhFI o <~ const �9 Ihl~ (3.25) 

The bound in Ihlo is obtained by an integration by parts in P0, using 

DhCj(p)=h(p)(i o~oCj(po, e(p))-2M-2Jf'(M-21(po+e(p)2)) ) (3.26) 

Then DhFj = Aj + Bj, where 

Aj(q) = f d a+ lp O(q _p) iOoCj(po, e(p)) h(p) 

= - i  I da+~p Cj(po, e(p))(-OoO)(q-p)h(p) (3.27) 

(note that h does not get differentiated since it does not depend on P0), so 

Iaj(q)l <~KoM J 1011 Ihlo (3.28) 

and the scale sum 5~f_t_z Aj converges absolutely. However, 

Bi(q) = -2M-2JIda+~pO(q-p)f'(M-~-J(po+e(p)2)) (3.29) 

is O(1), so Z f l z  IBj(q)l >/const. III, and we have to perform the sum over 
j before taking I" I to get a sharper bound. We write 

~. Bj(q)= -2 da+tpO(q-p)h(p) ~'xj ,,.=p~+,,Ipl., 
j = l  

By (2.13) 
- -1  

y'. f(M-2L'r)=a(M-'-(x)-a(x) (3.31) 
j=t 
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and a'(x) #0 only if x e  [ M  -4, M -2] by (2.12). So 

J~,-I Bj(q) l<,.21~[olhlolda+Ip(a'(po+e(p)2)+M-2"(P~ 

~<2 101o 11710 la'lolda+lp 

x (l([ipo - e(p)[ ~< 1) + M -z' l([ipo - e(p)[ ~< Mr)) 

~<4Ko It~lo la'lo Ihlo 

~< const. Ihlo (3.32) 

Thus, the divergence of Z [Bj[ as I ~  - c o  is due to terms that depend on 
the scale decomposition. Once the partition of unity is resummed, all that 
remains is a boundary term at j = I  which is uniformly bounded as 
I--* -co .  In general, the contributions to K where this procedure has to be 
applied are those from graphs that are nonoverlapping on root scale. There 
things are more complicated because the resummation of the partition of 
unity has to be done carefully, and because there are a lot more terms from 
the integration by parts. Note that the integration-by-parts formula (3.8) 
combines nicely with the [-operations; also, the bound in [hl~ avoids 
boundary terms and therefore allows us to show convergence, not only 
boundedness, of K' as 1--* -co .  

Theorem 3.5. Let G be a I PI two-legged graph and t an 
associated tree so that (t, G) contributes to (2.76). Then there is Ql > 0  
such that 

Y', [Dh Val( GJ)[o <~ QIL(G)J 2,,~(j, e/2) M ̀ j Ihl, 
JE J ( t , j )  

(3.33) 

and for all h~C~(~, R) 

Vt(h,t, G)= ~ ~ Dh Val(G s) convergesin I-Io as I--* -oo  

jgz J~.lu.j) (3.34) 

Moreover, there is a constant const (depending on G, t~, and u but inde- 
pendent of I < 0 )  such that for all heCl(~,  ~) 

- t I Val( G j) o ~= ~ 1-I ~ Y', Dh{ ~<const-1hlo (3.35) 
j I t ~ G  . f~t  f "  J E J ( I , j )  
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Remark 3.6. Note that in (3.35), as in the above example, the 
norm is taken after summing over the root scalej. This, as well as the addi- 
tional sum ~ , _  o over trees associated to G, is necessary to resum the parti- 
tion of unity properly. In all terms where the resummation of the partition 
of unity is not necessary, the sum over trees will be replaced by a maximum 
over trees times a constant, since the number of trees compatible with a 
fixed graph is always finite. The constant appearing in (3.35) depends on 
0, e, u, and the graph G in the same way as in Theorem 2.46. In particular, 
it is uniform on the set ~ '  given in (1.53). To reduce notation a little, we 
are not going to trace the factors of 2 through this proof, because it will 
be obvious in the proof that the factorials are again only produced by the 
nonoverlapping four-legged subgraphs. We denote a polynomial in IJl, 
whose coefficients may increase in inequalities and combine with other con- 
stants, by pol(j). In that notation, Theorem 2.46 reads 

I ~ Val(G J) <~ pol(j)  M v~j (3.36) 
J ~ J ( l , j }  

for any t ~ G. We also assume e < 1. Note also that (3.35) is not simply an 
application of Lemma 2.42, because the latter will cause Vh terms in some 
cases. 

Proof. By (3.10) and (3.9), 

Dh:=:( Dh- h-p---~.e / (3.37) 

so the left side of (3.35) consists of two terms. Since Vflo~ Iflo, the con- 
tribution to the second term from any fixed t, j is 

] (h ) y. ~ _ _ u .  V Vat(G J) ~<lhlolulo ~ IVat(GJ)I, (3.38) 
J~C(t. j)  ~,,e o Uo J~C(t,j)  

which, by Theorem 2.46(i), is 

As 

no 

IhlolUlo ~ QloZ,,o,12,,~(j, 2) M~J<<const.lhlo 
U0 j<~ - I  

the second term is consistent with (3.33) and (3.35). 

822/84/5-6-28 
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It remains to bound 

J 1 ~ gDh Val(GS) o (3.40) 
,~-G f~,nf~" JEJ(t,j) j = l  

Again, we do induction over the depth P of (t, G), defined in (2.131). The 
induction hypothesis (IH) is: if G is two-legged and 1PI and if (t, G) is of 
depth P, then (3.33) and (3.34) hold. Moreover: 

(a) For all two-legged 1PI graphs G and all i e { L  .... - 1 } ,  

i 1 Val(GJ) o Y', ~" I-I p-~ .t ~ D,, ~<const. ]h/o (3.41) 
j= l  t~G f~-t f "  d~,,C(t,j) 

depth(t,  G) ~< P 

Moreover, for any 1PI graph G with E---2 or 4 external legs and for 
s~{0 ,  1}, 

I ~'. Dh Val(G j) , <~ ]h]0 pol(j)  m r'~j (3.42) 
J E J(t.j) ." 

(b) Ift~(~b) is overlapping, Y].= l - ( E / 2 ) + e - s .  

(c) If C(~b) is nonoverlapping, 

o l - S  if E = 4  
Y'~= if E = 2 a n d s = 0  

- 1  if E = 2 a n d s =  1 

(3.43) 

The tree sum in (a) will be necessary to resum the scale decomposition 
in the way illustrated in the above example. An informal restatement of (b) 
and (c) is that the effect of Dh on the scale behavior is similar to that of 
a momentum derivative. Note that the h does not get differentiated even in 
the case s -  1; this hinges on the 1P irreducibility of G. 

If P = 0 ,  G has no nontrivial two- or four-legged forks (so G', con- 
structed in Remark 2.45, is equal to G), there are no /'-operations, and 
therefore the only factors that depend on e are the propagators. By (3.1), 

IDhCj(p)l ~ M-J+2(1 + 2  I]f' [1r -j+-" Ih[o 

x 1( lipo - e(p)l e [ M  j-2,  M j] ) 

-% const. M -2j 1g.(p) Ihlo (3.44) 
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We shall use the just introduced notation 1j(p) in what follows. Also, const 
will denote constants that may increase in inequalities and depend on ~3, u, 
and the graph G, but not on j or  the infrared cutoff/ .  

Case 1. P = 0 and G(~b) overlapping. We use Theorem 2.40 to get 

[Dh Val( GY)lo <~ const .  Ihlo M ~ 2 - ' ' + ~  max M -j~ I-I MOr~-~,,,~ 
leL{G} . l e t  

f > ~  

(3.45) 

Since P = 0, max M -j '  <~ M -y for all J e  j ( t ,  j) ,  so 

E 
d e  J ( t , j }  

IDh Val(GJ)lo<~Const �9 Ihlo MII-m+e)J E I-] MOt'Jl-J'I'~ 
Je~9"(t,j) f > $  

(3.46) 

and the scale sum over all J e J ( t ,  j) can be performed as in the P =  0 case 
of the proof  of Theorem 2.46. This proves (b) for s =0 .  If  G is two-legged, 
the factor M "j makes the scale sum over j convergent, and (3.33) (with I hlo 
instead of Ihl 1) and (a) follow. Convergence as 1 ~  - o o  [ that  is, (3.34)] is 
now obvious because every summand is independent of I for P = 0 and the 
series is absolutely convergent (recall also that the number  of terms in the 
sum over t ~ G is finite and independent of I). Similarly, an additional 
derivative with respect to the external momentum gives another factor 
M -j '  ~< M -j. Since G is 1PI, the spanning tree can always be chosen not to 
contain the line where h is, so that h does not get differentiated (alter- 
natively, one can use integration by parts to remove the derivative from h). 
Thus 

IDh Val(GJ)l, ~<const . M  y{ . . . . .  >lhlo 
J e  J I t . j )  

(3.47) 

which proves (b) for s = 1. 

Case 2. P = 0 ,  E ( G ) = 4 ,  and C(~b) nonoverlapping. The same 
bounds as above hold, with e replaced by zero. 

Case 3. P = 0 ,  E ( G ) = 2 ,  and (~(~b) nonoverlapping. If E = 2 ,  G(~b) is 
an ST or GST diagram [see Definition 2.21(ii), (iii)] and so is G(v~), 
where r~ is as in Lemma2.31.  Thus Val(G((~)) takes the form given in 
Remark 2.41, with an effective vertex v I with 2m legs. We now consider the 
case in which all strings consist only of a single propagator  (w;=0) .  
Insertions in these strings are treated as in P > 0. 
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r f~,J, 

Fig. 19. 

s ill 
T h e  case C(~b) nonover lapp ing ,  P = 0. 

If 2 m = 4 ,  Ca is four-legged. Since P = 0 ,  v~ is a vertex of scale zero. 
This can happen only in first order. Then 

Val(GS)(q) = Val(G(r = f d a+ ~p { O(q - p )  or ~3(0)} Cj(po, e(p)) (3.48) 

(3.33) follows from (3.24) and the bound (a) follows as in (3.32). Condition 
(3.34) is again obvious from (3.33). The bound (c) is obvious for s = 0. For 
s = 1, the derivative with respect to q acts only on 0, so (c) holds as well 
(actually, with a better exponent). 

I f2m >~ 6, G and t take the form shown in Fig. 19, with n/> 1 and f *  e t 
the fork such that (s.) 

C I 

is overlapping ( f *  exists, since otherwise G would be nonoverlapping, 
hence a GST diagram, hence a ST diagram, since P = 0, but then 2m = 4, 
since at scale zero there are only four-legged vertices), so 

~, Val(GJ)(q) 
J ~  ff'(t,j} 

Here 

m* 

= ~. ~. ' ~. f I~ da+~pkC,k((Pk)o,e(Pk)) W(q,p~ ..... p , , . )  
j l > j  /2>11 j * = J , , > J n - I  k =  1 

(3.49) 

w =  y. Va/( d( t r. ) ) (3.50) 
J e f [ t f . , j * )  

C(tz.) is a graph with 2 m * + 2  external legs, where m* ~>max{m-1 ,  
n - l } ,  and for each k e { 1  ..... m*}, either i k=j  or there is r e { l  ..... n - l }  
such tha t /k  = Jr. By assumption, m/> 3, so there are at least two lines with 
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ik = j. We may choose the labeling such that they are the lines for k = 1 and 
k =  2. Apply Dh to (3.49). If it acts on W, it can act only on a propagator 
of scale j~>~j*, since P =  0, and the net effect is, up to constants, a factor 
M -:1 ~< M- :*  and a factor h(pt). As mentioned in Remark 2.33, G ( f* )  need 
be neither overlapping nor 1PI, but (:,) 

r~ 

is overlapping and so the volume integral produces a factor M "j" by 
Theorem 2.40. Choosing the spanning tree as in Lemma 2.35, so that all Pk 
are loop lines, we have that Theorem 2.40 implies 

I " '*  Pl ..... P,,*) I-[ da+ lPk Cik(Pk) Dh W(q, 
k = l  

~<const. M i'+ ' +i"'MI~-I)J'MD:'J* ~. l-[ M~ 
J E J ( t f * , j * )  f > f *  (3.51) 

Since P = 0 ,  Df<O for a l l f > f * ,  and so the scale sum over J ~ J ( ( : . , j * )  
converges by the argument of the P = 0 case in the proof of Theorem 2.46. 
Since G( f * )  has 2 m * + 2  external legs, D : . = 2 - ( r n * + l ) = l - m * .  
Calling m r =  {k~{1 ..... m*}: ik=j,.}/> 1, we have 

m* t l -  1 
m * =  m, .+m--1  and ~ ik = ~, m r j , . + ( m - 1 ) j  (3.52) 

r = l  k = l  r ~ l  

Inserting this and using again M ~ -  l)Y" <~ M ~ -  ~Y, we have 

j . >  I m* ] ['-[ da+lpk Ci~.(pk) DhW(q ,p  I ..... p,,,.) 
>~Jl >-J k l 

~< const- Ih[o M e ' -  llj ~ M (n'-l)j+y~TS-~mrjr 
J,,-I > "'" >Jl > J  

x ~ M ~- .... U*-ZT-~,,,J* 
J * > J n - I  

n--  1 

<<- c~ " lhlo Mj~ E M'  .... 2 'u - J* ' I -  I E M""'i-J*'  
j * > ~ j  r = l  i<~j* 

~< const �9 Ihlo M J~ (3.53) 

This proves (c) for s = 0 ,  (3.33), and upon summation over j, (a) and 
(3.34), for the contribution to (3.40) where D h acts on IV. For this 
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contribution, the only remaining case is (c) for s =  1. With the spanning 
tree we chose, the derivative acts only on the functions associated to those 
lines in D h W in which the external momentum enters. When acting on a 
propagator, it produces a factor cons t -M-J l~<cons t .M-L The only 
dangerous case is when h "sits" on the path through Gr* through which the 
external momentum is routed, and the additional derivative acts on h. In 
that case we use integration by parts as in the proof of Theorem 2.46 to 
remove the derivative from h. This is possible because G is 1PI (note again 
that Gr* need not be 1PI, and if it is not, the derivative will produce a 
factor M -j, not just M-J ' ) .  Taking absolute values, we obtain the same 
bound as before, only multiplied by const.  M -j. This proves (c) for s = 1 
for the term with Dh acting on W. 

IfDh acts on one of the C~k, k~  { 1 ..... m*}, we can assume without loss 
of generality that k = 1, since i, = iz = j  and ik ~>j for all k, and the scale 
behavior degrades worst when the derivative occurs on the lowest scale. 
We have to bound 

f d a+ Ipl Dh Cj(pl) I m" (LY ..... E I'-[ rid+ Ipr Cir(Pr) W(q, 
(Jk) r=2 

(3.54) 

(where Zcjkl is short for Y~j, . . . .  >j~>j) for s = 0  and s =  1. To see (3.33), we 
apply the integration-by-parts formula (3.7) to the integral over p , .  When 
the derivative acts on W, we get the bound (3.53). The term containing 
Vh has the same scale behavior as if there had been no derivative at all. 
Condition (3.34) follows by the dominated convergence argument of the 
proof of Theorem 2.46(iv). To see (a) and (c), we use Lemma 2.42 in the 
p_,-integration to bound this by 

(3.55) 

Estimating 

IDh Cj(po, e(p))l ~< const- M --'j Ihlo l j (p)  (3.56) 

the C~. for k >/3 by Lemma 2.3(iii), and rearrranging the product, we find 
that (3.54) is bounded by 

(o" 
�9 (3.57) ~<const. Ihlo ~ f ~=ld"+lp~M-'~li(Pr) ~ l,j 

( jk)  r 
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The derivative on W acts on a line in Gr. and produces a factor con- 
st. M -j*. By Theorem 2.40 (and since none of the lines k = 1 ..... m* is in the 
spanning tree), the result when s = O  is 

~<const. Ihlo Z M i ' +  "' + i " M ( ~ - l ) J * M ~  

(Jk) 

E ['I MD#'b-J"~f)) 
J e J ( t f . , j * )  f > . f *  

(3.58) 

The sum over J is estimated as above, and also the rearrangement of the 
terms is similar to the previous case, so the bound is yet another 

~< const- Ih[o M ~j (3.59) 

which proves (a), and (c) for s = 0 .  For  s =  1, we need not apply 
Lemma 2.42: the derivative w.r.t, the external momentum can act only on 
propagators  associated to lines of W, and effectively produces a factor 
M - j "  (it cannot act on h, since h is in a string in the present case). The Dh 
acting on the string causes a factor M - j  as compared to the ordinary 
scaling behavior, which we take outside. The bound now follows by the 
argument between (3.49) and (3.53). 

Some of the bookkeeping of this P = 0 case could have been avoided 
by normal ordering, but the normal ordering prescription depends on e, 
and thus Dh would have produced similar terms there. Also, normal order- 
ing does not remove the GST graphs, so P > 0  has to be dealt with 
anyway. 

Up to now, the sum over trees was not really used, since the only term 
where a resummation of the partition of unity was necessary was the lowest 
order term. Let P > 0, and assume that the IH holds for depth P'  ~< P -  1, 
Now there are also two-legged subdiagrams on which Dh can act. It can 
also act on the projections ~ or 1 - f '  in front of them since projection on 
S depends on e. For  every t ~ G ,  we construct the graph G' as in 
Remark 2.45. We rearrange the sum over trees t as follows. Every t ~ G 
that gives rise to the same G' can be split into the tree t' rooted at $ and 
the subtrees t,. of t associated to every vertex w of G'. Thus, at fixed G', the 
sum over all t ~ G splits into one over all t' ~ G' and given t' ~ G', there is 
a sum over trees t ,  rooted at w for every vertex w of G'. Blocking the sum 
in that way, @e have for every G' and t' the vertex functions 

O,,.= }-" l--[ -~S F,,. (3.60) 
t., ~ G., f E  t,,. t l f "  

with F,,. given by (2.125). For  two-legged vertices w, O,,. has the same struc- 
ture as the left side of (3.41), but the depth of (t,., G,,.) is smaller than P 
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for all t,. contr ibut ing to the sum for q~,,.. This is the basis of  the induction 
scheme. 

Case 4. P > 0 ,  E(G)=2, 4, and C(~b) overlapping. Then  (G ' )~  (~b) is 
overlapping as well. Fo r  the derivative of  a p ropaga tor  we again use 

IDhCj,(p)I ~< cons t ,  l j , (p) M -2j' Ihl0 (3.61) 

If the derivative acts on an r-fork, we write ~,,. = (1 - l ' )  T and use 

Dh(1 - - [ )  T = ( 1  --g') DhT+s ~,,T (3.62) 

to isolate the term where the renormalizat ion cancellation gets lost. In the 
second term, we associate the factor 

~=g ~,,T (3.63) 

to one of  the lines going into G,,.. By Theorem 2.46, applied to T, 

1r ~< ]h!o lu[o IT[1 ~< const-  1171o 
U0 

(3.64) 

By the IH (b) or (c), 

[ lj~.,.,( 1 - r D h T]o ~< const  �9 M j''~ IDh T[1 

<lh loM j~''' ~ pol ( j ' )M c~-I~j' 
J" >1 Jn.L') 

I/rio pol(j,~.,,I) M *j''~ 

Adding (3.64) and (3.65), we obtain 

(3.65) 

I Dh ~. .  I o ~< const �9 1tll o (3.66) 

so, compared  to the usual behavior  (2.155), we have lost a factor M j"'~, 
which is the same as saying that there is an extra factor M -JI for one of  the 
two external legs of the graph G,,., just as if the D~, had acted on that  leg. 

Similarly, if the derivative acts on a c-fork, ~,,. = s 

(3.67) 
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where 

T =  ~ )-'. H 1 ~ P'aI(G~.) (3.68) 
l<~j'<~jn(.. ) t..~G., f~t.. nf[ JE./(t...j') 

application of the IH  (a) to the first term and Theorem 2.46 to the second 
term yields IOhETIo <~ const-Ih[o. Compared to (2.162), the derivative has 
again cost us a factor MJ"~"L Again, we associate a factor zt = M -j' to one 
of the external legs of G,.. 

For  an SSI, there is the same factor. For  a four-legged vertex, there is 
a factor pol(j~,,.)) M - j ' '~  by the IH (b) and (c). 

To summarize, the effect of Dh on the scale behavior, as compared to 
the power counting behavior (2.162) and (2.163), is accounted for by an 
additional factor 

Z! = M - j r  (3.69) 

on a line of G'. By construction of G', M -j' <~ M -j, so, by Theorem 2.40 
[similar to (2.166)] 

IVal(G'J)lo <~c~176 1-I M~162 I"[ M J ' "  
f Et" ,~'~ V2(G') 
.f> 4 

(3.70) 

The proof  that the scale sum over J e j ( t ,  j) converges is given following 
(2.166), so (b) holds for s = 0. For E =  2, the sum o v e r j  converges because 
of the remaining M ~j, which proves (3.33) and (a) and (by the usual 
dominated convergence argument)  also (3.34). 

For s = 1, we apply an extra derivative with respect to the external 
momentum q before taking I'lo- All we have to show is that its effect can 
be bounded by a factor const .  M - L  For its action on a propagator,  this 
follows from Lemma 2.3(iii), and for its action on a vertex function ~,.  that 
is not affected by Dh, it follows from Theorem 2.46. For  its action on Dh 
of a vertex function coming from an r-fork or a four-legged subdiagram of 
G, it follows 5rom the IH (b) and (c), since the scales of these vertices are 
summed above j~,,.~. However, we have to avoid two derivatives on any 
c-fork, and also prevent the derivative from acting on h. The only case 
when two derivatives can act on a c-fork is when Dh acts on the c-fork and 
O/aqi acts on the same c-fork. The latter derivative can be removed by an 
integration by parts because G is 1PI (and then cannot act on h), so the 
bound for s = 1 follows as in the proof  of Theorem 2.46. 
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Case 5. P > 0 ,  E(G)=4, and (~(r nonoverlapping. The bound (c) is 
proven as above, omitting the parts used to get e > 0. 

Case 6. P > 0 ,  E ( G ) = 2 ,  and (~(r nonoverlapping. Since G' is a 

quotient graph of G that contains all lines le L(G) w i t h j l = j ,  G ~ ( r  (~(r 
t is a GST graph, and so is G'(r~), where re is the maximal nonoverlapping 

t subtree of t' rooted at r [Lemma2.31(i i)] .  The value of G'(r,~) is an 
integral of the form given in Remark 2.41 (from which we now take the 
notation). By construction of r~, the vertex function ~k',,, belongs to a sub- 
graph H of G', of scale j *  such that G' overlaps on scale j*.  Dh can act 
on JZ/,,, or on one of the strings S;. In the former case, the bound follows 
by (3.51)-(3.53), because (3.69) applies due to the volume gain at the scale 
j *  where the derivative acts, and because strings of two-legged subdiagrams 
satisfy [Si(p)[ ~< pol(j) M-Jl j (p)  by (2.162). 

Let Dh act on one of the strings. We call j"~, defined in Remark 2.41, 
the scale of the string Si. We do the case s = 1 first. We choose the span- 
ning tree as in Lemma 2.38; then the additional derivative with respect to 
the external momentum q acts only on Jl/,,,, i.e., at a scale where there is an 
improvement factor M ~/', and it cannot act on h. The effect of Dh is again 
accounted for by a factor M-J'i~ ~< M - j  on one of the lines. Taking the M - j  
in front, (c), for s =  1, follows by (3.51)-(3.53). 

For the final case s = 0 ,  we consider two situations, sketched in 
Fig. 20, separately. 

(A) There is a string o f s c a l e j  (i.e., root scale) on which Dh does not 
act. (This is the case if there are at least two strings of scale j or 
if Dh acts on a string S' of higher scale.) 

(B) There is only one string on root scale, and D h acts on it. 

(A) By (3.69) (and since all insertions in a string are two-legged), there 
is effectively an M -j' and a factor h(p'), where p' is the loop momentum 

Lemma 2.42 
jt  > j applied here 

�9 * ~ 

(A) (B) 

Fig. 20. The case C(~} nonoverlapping and D h acting at root scale. 
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of S'. We apply the Taylor expansion procedure of Lemma 2.42 to the 
string of scale j on which Dh did not act (see Fig. 20A). Although this 
produces derivatives on other factors in the expression for Val(G), there are 
no Vh terms, because p' is an independent loop momentum. The Taylor 
expansion generates two kinds of terms, one from acting on the r-forks, 
bounded by 

const. M2J[Tl, lJg.,[o<~pol(j) M2JM~-~ul~/L.,[ o (3.71) 

by Theorem 2.46 (this includes the sum over the scale of T as well as the 
loop integral) and thus convergent, and one where a//,,, gets differentiated, 

0 
1j(p) -~pYl,,,(q,p,...)[ (3.72) 

The scale balance is identical to the P = 0  case, so (3.57)-(3.59) hold, with 
const replaced by pol(j). This proves (c) and (a). 

(B) In this case, the vertex Vl is a four-legged vertex of G' with a ver- 
tex function #J = ~l,,,, to which the IH applies. We thus have to bound 
~j>~l Xj(q), where 

Xj(q) = Ida+ ~p ~(q' p) DhS(p) (3.73) 

In some of the following cases, we need to resolve the four-legged graph to 
which the .~ is associated (unless it is a vertex of scale zero, which behaves 
as a vertex with improvement factor M j whenever a derivative acts on it). 
The vertex function 4J is given by the scale sum 

~j(q,p)= ~ o.?/.(q,p) (3.74) 
i ~ j + l  

with I~.~.[., ~< po l ( i )M - ' i  (see Fig. 20). Note that by Theorem 2.40 and by 
construction of r~, there is a volume gain M ~j" in the entire integral for Xj. 
S is a string of length 17, 

j+ 1 (n- 1 / 
S(p) = ~ 5 Cjk(P~ e(p)) ~Tk(p) Cj,,(po, e(p)) (3.75) 

Jl . . . . , in-  I = J  \ l 
r a i n {  j l  . . . . , j , ,  - 1 } = j  

The T k are scale sums of 1PI two-legged insertions and thus dependent on 
j and :~ E { 1, : ,  1 -  s The T k obey the bounds of Theorem 2.46 and, as 
graphs of depth P'<~ P - 1 ,  also the IH. The undifferentiated string obeys 
[S(p)l ~< 1j(p) pol(j)  M - j  by (2.162). 
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The form of the scale sum in (3.75) is due to the sum over all trees 
t ' ~  G', which contains a sum over all these assignments. This is the point 
where the tree sum is necessary, as will be seen when the partition of unity 
is resummed. 

If  D h acts on an insertion from an r-fork, we get the two terms of 
(3.62). The first one is bounded using (3.65), so in this term the Dh changes 
the root scale behavior from M j to M ~j. For the second term, call 
U= (h/~,,e) 9,, 7". By (3.64), I UIo ~<const- Ihlo, including the sum over the 
scale of T. This amounts to a loss of M -j. Apply Lemma 2.42 to the string 
S to extract another M j - j "  and use the volume gain of M j'". Note that the 
Taylor expansion does not produce any derivatives of h since (in the nota- 
tion of Lemma 2.42) {U(p)  = U(0, 0, co) does not depend on r and cp. The 
loss of the renormalization cancellation would make the scale sum over j 
marginal, but the extra M ~j makes it convergent. This proves (c) and (a) 
for this contribution. 

The case of Dh acting on a c-fork is similar since 

The second term is bounded by Ih[o pol( j)  M ~j by (2.153). The IH applies 
to the first term, but we have to make up for the loss of the usual factor 
M ~ - . , u  of (2.162). Therefore, after applying Dh, we use Lemma 2.42 in the 
same way as for the EU term of the just treated r-fork case. The Taylor 
expansion is such that the term ~D h T is treated like a constant. Thus, after 
Taylor expanding and collecting the gain M ~j, we find that [ED~, T[o appears 
in the bound. The IH applies and implies (c) and (a) for this contribution. 
For  SSI, write 1 = 1 - g '  + { and treat the two terms as above. 

Finally, Dh can act on a propagator  of scale j (or j + 1 ). Now we may 
assume that there are no c-forks or same scale insertions or r-forks of scale 
below, for example, j +  7 on the string S, since otherwise (c) and (a) follow 
immediately from the improved power counting behavior (2.152), which 
suffices by itself to control the M - j  from the action of Dh. The strategy is 
now similar to that of the lowest order example. To get (3.33), we apply 
(3.7). There are three terms: the term containing V. (hu/~,,e) has the same 
scale behavior as if the derivative had not acted (but contains a Vh). The 
second term is when u . V = ~ , ,  acts on an r-fork ( 1 - [ )  T. Since ~ , , { = 0 ,  
the result is ( 1 - [)  ~,, T +  {'N,, T. By Theorem 2.46, the first summand has 
a net MJY~j,>j M j'~l § =M~j, and the second is treated by Lemma 2.42, 
as above. The third term is when ~,, acts on ~ .  In that case, we resolve the 
corresponding subgraph and proceed as in the case q/,.,. So in all cases, the 
scale behavior deteriorates from M j only to M "j, which proves (3.33), and, 
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by the same argument as in the proof of Theorem 2.46, also (3.34). For  the 
proof of (a) and (c) we must again consider two terms, because 

Dh Cj(p) = h(p)( iOo Cj(p) - 2M-ZJf~(p)  ) 

In the string S, actually a product Cj(p)"  Cj+~(p) ...... appears, where 
m i> 1 depends on the scale assignments, and the relevant formula is 

t l  

= h(p) iO o I-I cj ,(p) 
I=1 

- (ipo - e(p))"-  ' f (M- '-J 'x)  , , (3.76) 
/ = 1  a ~ p~ + el p l -  

In the contribution of the first term to (3.76), we integrate by parts in P0- 
There is no boundary term. h depends only on p, so 0 o can act only on the 
vertex function ~/ or on an r-fork, In the former case, we combine the 
known behavior [~ [~<po l ( j )  M -j*, Theorem2.40, to get the volume 
factor M "j*, and Theorem 2.46 for the Tk and the standard bounds for Cj, 

I d a +  'p S(p)  ~(q ,  p) h(p) <, pol(j)  11710-M j '~- ' 'Mj 

~< Ihl0 pol(j)  M j" (3.77) 

to see that the scale sum converges [more precisely, we apply the proce- 
dure of (3.49)-(3.53), which by now should be routine].  

If Oo acts on an r-fork, we get two terms from 0o(1 - l ' )  T = O o T =  
( 1 - s  T. Recalling that T is given by a scale sum T=52~>j Ti, 
recalling (2.97), and using Lemma 2.7, we have 

I(1-#)0oTIoj~ Y. I(1-t)OoZ, lo.j<~-~2Mj • IZ, lz (3.78) 
i > j  UO i > j  

By Theorem 2.46(i), this is 

UO i > j  -- 

UO __ 1 

const - M j" (3.79) 
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The second term is not as easy because there is no reason for {0oT to be 
small. Here we have to use another integration by parts, and in some terms 
an additional resummation, as follows. We have to bound 

n-- I 
X=f  dph(p) ~J(q,p)(EOoT(~))(p) f i  Cj~(po, e(p)) l--[ (1 - s  T(~)(p) (3.80) 

/=1 r = 2  

for n >/2 (otherwise, such a term does not occur). Superficially, the scale 
sum of this looks divergent, but we can use that E00 T is independent ofpo 
to do another integration by parts. We rewrite X as 

f i  n--  | 
X=f  dP h(p)~(q'p) (s fJ~(P) l--[ (I--8) T(")(p) 

(ipo-e(P))" r=2 1=1 
(3.81) 

and use that for n/> 2 

1 i 0 1 

(ipo-e(p))" n - I  Opo(ipo-e(p)) ''-I 
to get 

- i  Up O 
X=l~--l f (ipo-e(p)) ''-1 Opo 

x (h(p) ~J(q,p)(s 

(3.82) 

f l  n-- 1 / 
fJ,(P) ]-I ( I - { )  T (r, (3.83) 

/~  1 r = 2  

h and {8 o T (~ do not depend on Po, so 

- i  X = n -  1 f dp h(P)(fO~ 
(ipo-e(p)) "-1 

x - -  ~J(q,p) ~I fJ,(P~) l--[ (1 - s  r(r)(p) (3.84) 
(~Po I=1 r = 2  

If the derivative were not there, the integral would obey the ordinary 
power counting bound. We analyze the effect of 0o. If the derivative acts on 
~', we proceed as above to see that there remains a factor M j~. We 
postpone the treatment of the term containing 0ol-]f j§  to the next 
(and final) case. The derivative acting on I--[(1-s T (r) produces a sum 
of terms similar to the one we started with, but with number of r-forks 
on the string decreased by one. Thus we may proceed iteratively to 
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remove all these terms, so that it remains to estimate (having renumbered 
the T's) 

f 1--lk t[ 0 T~r))t ,,~ ,,- I dp~J(q,p) h(P)~xr=lt o ~'~ 
( ipo _ e(p) ),,-k I-~ r=k+l  

( 1 - E )  T'r '(p) 0@ ~ f i  fj,(p,) 
I = l  

(3.85) 

for k ~<n-1 .  This will be done by resummation, and the procedure is 
similar for all k, and similar to the procedure to deal with the second term 
in (3.76), which we discuss now. 

We have to bound the integral 

i h(p) Y(q) = - 2  ~ d " + ' p ~ ( q , p )  
o>j~l (ipo--e(P 1) '-I  

j + I (n-- 1 ) 
x 2 .)~I (1-~) r~(p) 

Jl ,...,j, =J 
rnin { j l  ....,j,,} = j  

x ~ M-2J~f '(M-2jt(po+e(p)2))I-I  f (M-2J'(Po+e(P)2))  (3.86) 
/ = 1  r # /  

by resumming the partition of unity on line number L To this end, we first 
rearrange the sum over the Jk by using that for all k e { 1 ..... n} 

--1 

U {(J, ..... j , , ) : j k e { j , j +  1} n {I, .... --1}, min{j,  ..... j,,} = j}  
j= i  

--1 

=Zk(  I) U U Mk(j)  (3.87/ 
j ~ l +  1 

where 

Mk(j) = { (j,  ,..., j,,): Jk = J, Jr ~ { I, .... -- 1 } 

and for all r, s ~ { 1,..., n}, [ j , . --L[ ~< 1} (3.88) 

Zk(j) = {(j,  ..... j , , ) : j k = j a n d j r ~  { j , j +  1} for r 4:k} 

To see this, we note that the left side is Z = ZI w Z,_ with, for each fixed k, 

- - I  

Z , =  U {(Jl ..... j , , ) : j k=j ,  j r E { j , j + l }  f o r r ~ k }  
j = i  

- 1  

= Z k ( I ) w  U Zk(j)  (3.89) 
j = l + l  
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and 

--2 

Z?.= U { ( J , , ' " , J , , ) : J k = j + l , J ~ { J , J  +1} 
j = l  

for r •k, min{ j ,  ,..., j ,}  = j }  

- I  

U 
i = l +  

{(j, ..... j,,): j k=i ,  j r6  {i-- 1, i} 

for r r  min{j ,  ..... j,,} = i -  1} 

Here 

We have 

Finally, 

- 1  

= ~ V,(j) (3.90) 
j = l + l  

Vk(j) = { (j,,..., j,): j k = j ,  jr~ { j - -  1,j} 

for ," g: k and rain{ j ,  ..... j,,} = j -  1 } 

- 1  

Z = Z k ( I ) w  0 (Zk(j) w Vk(j)) (3.91) 
j = l + l  

Zk(j) u Vk(j) = { (j, ..... J,,): Jk = j and either j ,  ~ {j, j + 1 } gr ~ k 

o r j r e  { j -  1,j} V r r  min{jt  ..... j,,} = j -  1} 

(3.92) 

The condition min{jm ..... j,,} = j - 1  implies that the sequence ( j  ..... j)  
appears only once [i.e., Z k ( j ) n  Vk(j)= ~ ] .  The result is then obviously 
equivalent to ]Jr -J~ ] ~< 1 for all r, s. 

We apply this to Y as follows. Note that all Tk and ~ depend on j 
(unless ~/ is  just a vertex of scale zero). For all r e { 1,..., n - 1 }, T,. actually 
depends on the scale Jr of a line going into Tr. Fix all Jr for r r k; then the 
scales of all T~. are fixed. If ~ depends on j, it is of the form 

?Y(q,p)= ~ ~ ( q , p )  (3.93) 
i > j  
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We interchange the sums over i and j, 

h(p) 
Y ( q ) = - - 2  ~. ~ fda+'p~.(q,p)  

0 > / > ~ 1  i > j > ~ l  (ipo--e(P)) "-1 

x ~ (1 - - s  Ts( p 
Jn..-., jn = j s 1 

min{  J l  ...., Jn} = J 

x ~. M-ZJtf'(M-2J'(p 0 + e(p)2)) l-'[ f(M-2j'(Po + e(p)2)) 
/ = 1  r v ~ l  

We have 

(3.94) 

i 

U 
j = l  

{(J, ..... J,,): Jke { j , j+  1} n {I, .... --1}, min{j t  ..... j,,} = j }  

i 

= V k ( i + l ) w Z k ( I ) w  U Mk(j) 
j = l + l  

as before. Choose k = 1 + 1 or k = 1 -  1; then 

t l - -  1 

Z 1-I (1-~) T,(p) [I -2j, 2 f ( m  (p0 + e(p)2)) 
( j l , . . . , j n ) e  M k ( j )  x =  [ r #  l 

X h / [ - - 2 J l f t ( t l / f - - 2 j t ( n 2  -'- s ,* '*  , t o  + e(p)2)) 

(3.95) 

c ] E ,._[I E J(M-:,:,-) 
( J l  ,.... J,, ) e All,.[ j )  \ .  / J l  = J -- 1 .v = p~ + e( p 12 

.it n o t  s u m m e d  

x ]-[ f(M-ZJ'(Po+e(p)2))f(M-2j(po+e(p)2)) (3.96) 
r~ {k.t} 

By momentum conservation and the support properhes of the f ,  
(2.16), we can now extend the sum over J / t o  the entire interval {L .... i}. 
Using 

i 

f ( M -  2ix) = a ( M - 2 1 x )  - a ( M  -2(i+ l)x) (3.97) 
j = t  

[see (2.12) and following] and calling E2=po+e(p) 2, we have 

i 

f(M-2JE 2) Y, M-2J,U'(M-2J'E 2) 
j l = l  

=f(M-2JE2)(M-Zla'(M-21E 2) - M -2"+ I)a'(M -z"+ llE2)) (3.98) 

822/84/5-6-29 
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Since a'(x) ~ 0 only for x ~ (M -4, M -2) and f ( x )  :A 0 only for x e (M -4, 1 ), 

f (M-~x )  a'(M-2%) = 0 for all x unless k r {/, 1 -  1 } 

Since j ~  {L .... i}, the only nonzero terms in the sum over j are j =  I and 
j =  i. Thus we get four boundary terms in the estimate for Y, two at both 
the lower and upper ends of the summation region; the two from BLk(i) 
and Bz.k(D are similar to the following two, which we discuss in detail. 

I f j  = L we estimate 

2 h(p) Z M-21fdd+'p~Ji(q,P) (ipo_e(p)),,-i 
O > i > ~ l  

n - -  1 

• Y 1--[ (1 - f )  T~(p) 
I j l , . . , , j n l ~ M k ( 1 )  s =  I 

Jl n o t  s u m m e d  

• 1-] f(M-2Jr(Po+e(P)2)) 
,-r {/,-JI 

-1 f 1 ,,-i 
~<const. Ihlo ~ j da+'P I?~(q,P)l lipo_e(p)l,,-~ I-] I(1 - { )  T,(p)I 

i = l  s =  1 

x 1( [ipo-e(p)l ~ [ M  ' -2 ,  MZ]) (3.99) 

We now use Taylor expansion for all the r-forks as in the proof of 
Theorem 2.46, to bound this by 

(H ) ii , l M-~_,M-,,, ,~z-2~ ~ d,t+lp [~(q,p)[  ~< const. Ihlo M I I T.~I ~ 
s = l  i = l  

x l(lipo-e(p)l ~ [M z-2, MZ]) 

n - -  I 

~<const-IhloR I] IZ.,l~ (3.100) 
s = l  

where 

- I  

R = M - Z Z s u p  ~ fd'l+'ple~(q,p)l l([ipo-e(p)l~[MZ-Z,M']) (3.101) 
q i = I  

By maximality of r~, we know that there is a volume improvement on scale 
i, so 

- - l  

R ~< M --'z. const �9 ~ M"~M-'/~< const (3.102) 
i = l  
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It remains to be shown that the product over IT.,. I ~ stays bounded, i.e., that 
there are no factors L This can be seen by estimating the last sum in 
(2.155) differently: by Lemma 2.44(v), 

IJnl , , . l l  - 1 

~. 2,,(j.., e/2) M j"~ = ~ 2,,( - l ,  e/2) M -~t 
J., > jn., ')  I =  1 

<<, ~ (a,,l"+b,,)M -d 
I = 1  

~< const. (n, c) (3.103) 

independently ofj~u,. , so, inserting this into (2.155), we get IT.,I, ~<const 
for all s. Thus this term is bounded. 

At the upper summation end j = i, we have to estimate 

f dd+~p~(q,p)  h(p) 
o>/>~, (ipo-e(P)) "-I  

n -  1 

x M  -2s ~ ]-[ ( 1 - g )  T,.(P) ]7 f(M-'-i"(po+e(P)'-)) 
( j l . . . . . j n ) ~ A ~ k ( i )  s =  I r ~ { k . I }  
j t  n o t  s u m n a e d  

- 1  

<~const. Ihlo ~ M-2Sfdd+~p le~-(q, p)l l( l ipo-e(p)l  ~ [M/-2 ,  M;] 
i = l  

n - -  1 

xm-("-l l( i-2) l-" I ( 1 - d )  T,,,(p) 
s = l  

- - I  n - -  1 

~const.lhlo ~ M -2' I-I IT,-I, 
i = l  s = |  

x l dd+ tP [~i(q, P)[ l([ipo--e(p)l ~ [ M s-'-, MS]) (3.104) 

By (3.51,)-(3.53) without the Dh, the last integral is bounded by 
const. M ~2§ so this is 

-- I  n-- I 

< Ihlo Y', M ~ I-I IT, I, 
i = l  s =  I 

~<const.lh[o | (3.105) 
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R e m a r k  3.7. Actually, the following stronger convergence state- 
ment holds�9 Let (t, G) be fixed, E(G) =2 ,  G 1PI. Let [h[~ < ~  and for I ' > I  

/ ' - -  1 

V~'(h, t, G)= ~ ~ D,, Val(G s) (3.106) 
j = l  J~J ( t , j )  

Then, as I - - - , - ~ ,  V~'~ V r with IWrlo~lhl, W r and W r vanishes as 
I '  --* - ~ .  In particular, for all k/> O, 

[Vt(h, t, G ) -  V,_k(h, t, G)lo~< Ihl, if/, (3.107) 

with W / ~ O  as I ~  -oo .  

3.3. Convergence of the Derivat ive 

In this section, we prove Theorems 1.6-1.8. Given all the detailed 
information about the two-legged and four-legged vertices that we have 
gathered in the last two sections, these proofs will be applications of 
elementary convergence theorems for absolutely convergent series. For the 
convenience of the reader, we summarize the results derived so far. Recall 
the explicit expression (2.76), 

- i  1 
K~(p)= - Z  ~ ~ 1F-[ ~ Z Val(GJ)(O,P(p)) 

cs �9 j = l  t ~ G  . f 6 t  f "  J ~ j ( t , j )  

For all r>~ 1, K~ converges as I ~  ~ in [.[~ to a function K,.eCJ(~, ~) 
(see Section 2.7). Let ~ '  be as in Definition (1.53), and A ~ as defined there- 
after. Let e be in ,~'. Since for I >  - ~ ,  K~ is differentiable in the sense of 
Fr~chet, ~8~ the derivative t ,  (K,.) e Z, e can be evaluated as the directional 
derivative 

(KI) ' (11) = DhK~,(e) (3.108) 

Fix r~> 1, let I =  - i i ,  and denote KT" =K,,. Then by (3.33) (summed from 
- n - m  to -i1), (K,,),,>~l satisfies 

1 . t  . t  
lim sup sup i~llt[K,,(h)-K,,+m(h)[o=O 

n ~  m : > O  I h h = l  

(3.109) 

for all m~> 1; thus it converges in operator norm I['[[u, to an operator 
~",.es By (3.108), 

1,-',.(h)= lira DhK,, (3.110) 
1 1 4  
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so by (3.35) 

Ix',.(h)lo ~ cons t .  Ihl0 (3.111) 

So far this was all at  fixed e e l ' .  The  constants  and bounds  depend 
on Uo, e, lel2, lu12, and the size 6 of  the ne ighborhood  of  S. By definition 
of ~r (1.53), every e ~ ~r has a ne ighborhood  q/. on which these constants  
are uniform, and thus all the above bounds  hold uniformly in e, and also 
the convergence is uniform. It remains  to be shown that  x' is the derivative 
of  x and that  the m a p  e--* x',. is cont inuous  on ~r We first show by an 
e /3-argument  that  e ~ x',. is cont inuous,  as follows. Write 

" '_ ' - . . . . .  _ - -  -' (3.112) ~:, ' ,--Ke,=tc, ' ,  K, ,{e t )+K, , (e l ) - -K, , (e2)+K, , (e , )  ~:e2 

Let e >  0; then there is n/> 1 such that  [IK',,--K~,(ei)ll < e / 3  for all eie~ll. Fix 
I =  - n  with that  proper ty .  At fixed L 

II(g~)' ( e l ) -  (K~)' (e2)[[ < C, [ l e l -  e_,ll (3.113) 

C1 grows with L but we need only one fixed value of L So for I le t -e2l l  < 
e/(3fr), II~.",,(e~)-x',,(e2)]l <e .  It  is now easy to see that  to' is the derivative 
of  K,. = x since 

K,,(e2) -- h-,,(e, ) = K',,(e I )(e 2 -- e, ) 

1 

+fods [x;,((1 - s )  el +se~)--x',,(el)](e,_--el) (3.114) 

so, taking the limit n--* ~ ,  and calling h=e2--el, 

1 P 
t | t . t  x(el +h)-tc(el)=xe'(h)+ J0 ds(x"~+"h-K"~)(h) 3.115) 

The second te rm is o(h) by continui ty of  K', so h-' is indeed the derivative 
of x. This proves  Theorem 1.6. 

Proof of Theorem 1.7. Let e I and e2 be as stated in Theo rem 1.7, 
K;.Im(e)= Z.,.= j R  2SKs(e), and e I +K~ff)(el)=e2+K~Rl(e,_). Then  

that  is, 

f 0  ~ 0 (R  , e 2 - e l +  d s ~ K ~ ' ( ( 1 - s )  el+se2)=O (3.116) 

(4 + L ) ( e 2 - e l )  = 0  (3.117) 



1330 

with 

Feldman e t  al. 

1 B 

L ( h ) = I o  ds ~" 2~Ki,.(ez + s(e2--el))(h) (3.118) 
s=l 

Since el -]-s(e2 --el) E d  for all s t  [0, 1 ], 

IIK'A el + s(e2 -- e,))ll ~ ~< c s  

so []L]]~ < 1 and ~ + L  is injective. Thus e z - e l  =0.  

(3.119) 

Theorem 1.8 follows from the observation made earlier that any 
derivative with respect to the external momentum of a Hartree-Fock-type 
graph will only act on ~. Since OeC k, so is DhH ~, and the statement 
follows from a standard application of the contraction mapping theorem. 

A P P E N D I X  A. V O L U M E  E S T I M A T E S  

In this Appendix, we prove Proposition I. 1 and uniformity of C v o  I and 
e on the set ~ defined in (1.53). By definition (1.34), the integral 12 is sym- 
metric in all three arguments, so we may assume that r/3/> max{l/~, q2}. By 
choice of Cvo~ we may also assume that ~/3 is so small that [e(p)[ ~<2r/3 
implies p c  U~(S), with fi given in Lemma 2.1, and that q3 ~< Go le12/2. If S 
has more than one connected component, we may also assume that 113 is 
so small that the neighborhood [e(p)l ~<2q3 falls into the same number of 
connected components as S. Let the coordinates (p, co) be as in Lem- 
ma 2.1(iv) and denote p as a function of these coordinates by p(p, co); then 

I2(~/i, ~/2, q3) 

= sup max dp, dcol J(Pl, col) 
qE..~ v l , t ~  { - - 1 , l }  --r/I 

f tl2 fS X dp2 dco2J(P2, co2) l(]e(vlP(Pl, col)+ v2P(P2, co2)-Fq)] ~PI3) 
--q2 

- -  ql r/2 sup max sup dco~ 
k i l O /  qE,~ v l ,v2a{- - I . l  } [pl].lP2]~q3 us 

x fs dco2 1( le(vl P(Pl, co1) + v2P(P2, co2) + q)[ ~< r/3) (A.l) 
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By Lemma 2.1 and the mean value theorem 

le( v l P(Pl, col) + v2P( P 2, c02) + q) -- e( v l p(O, 091) + v2p(O, c02) + q)l 

~<2 lell q3/Uo (A.2) 

for all Pl,P2 with Ip;I ~<r/3- Thus 

le(vlp(Pl, ogl) + vzp(P2, o92) + q)l ~< 113 (A.3) 

[e(vlp(O, ogt)+v2p(O, o92)+q)l~( l  +2[e[l/uo)r13 (A.4) 

[2(rll,q2, rl3) <~ 4(Ao/uo)2rllrh W((l + 2 le[i/Uo) q3) (A.5) 

with 

W(q) = sup max fsdog, fsdo92 
qE..~ vl,o2~ { - -1,1} 

x 1( le(v~ p(O, co,) + vzp(O, o92) + q)[ ~<'7) (A.6) 

Thus the function W(r/) contains the improvement over ordinary power 
counting. The following lemma implies the bound (1.33) for I2 with 

C~o, =23(1 +2 l e l , / u o )  ~ (A.7) 

where Z 3 is a constant that depends only on Zo, Z~, p, x, go, and [el2. 

kemma A.1. W(q)<~Z3q ~. 

Proof. Let fl ~ (0, 1) and Y- c S • S be the set where the intersection 
is transversal, 

Y-= {(col, co2)~Sx S: [1-(n(ogt).n(o92))z]:->~rl l-p} (A.8) 

and g its complement, g = S • SKY-, and split W(q)= T(rl)+ E(q) into the 
contributions-from these two sets. The idea is that if (o9~, w , ) e  Y-, then the 
tangent spaces To~,S and T,o,.S span R a, To, S +  To~,_S= R a, and therefore a 
combination of co I and o9 2 will be transversal to S, and that 8 has small 
measure because of Assumption A3. fl will be chosen at the end. 

Fix any (05~, 052) ~ Y ,  and for i~ { 1, 2}, let T i=  T,~,S as a subspace of 
Ra (in other words, 7",. = {x ~ Ra: n(05;) �9 x = 0} ). By transversality, T1 c~ T 2 
is a proper subspace of both T I and 7'_,. Choose an ONB at ..... aa_ ~ for T l 
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such that a j is or thogonal  to Tt n T2, and an O N B  b l ..... b d_ , for T 2 such 
that bl is or thogonal  to T~ n T2; then la~. b ~ l =  In(c~l). n(ch2)l. Let 

bl-(bl-al)a) 
a a =  [ 1 - (n(col)-n(r 2] I/2 

(A.9) 

For  (~',,~_, ..... %_~)  in a ne ighborhood of  the origin, let 
d- - I  co, (~'1,0c2 ..... % -  1 ) ~ S be the image of  ~', a i + Z i  = 2 ~ ~- Ta t  S under  the 

exponential  map. Similarly let co~(fll ..... f l , z _ l ) ~ S  be the image of  
Z~"5__11 f l ib ie  T~,_S. The  Jacobian 0(co I , co2)/O(~x',, 0~2,..., f ld -1)  is bounded  by 
a constant  in a ne ighborhood of  the origin. Make the further change of  
variables substituting 

a 1 . b  1 
0ff 1 = i x  I 

[ I - -  ( n ( o ) , ) .  n (o) ,_ ) ) - ' ]  ,/2 ~,, 

f l l  - -  Vl v2 
[ 1 - (H(COl) �9 / / (0 )2) )  2 ] 1/2 ~ d  

for (~'1, fl,). The Jacobian is 

a ( ~ ' , ,  ~_, ..... ~ , - , , / L  ..... & - , )  
= 

(: al l ) det [ 1 - (n(ool)- n(o)2)) 2 ] i/2 

Vl V2 

[ 1 - (n(co,)-n(co2)) 2] ,/u 

v~ v 2 r f -  1 
- [ 1 - ( n ( o o j ) -  n(o~,_))'- ] ~/2 ~< 

Define 

P3 = e(vl p(0, col) + v2p(0 ,  0.)2) + q) 

viewed as a function of ctj ..... OCd, f12 ..... f ld -1 .  Note  that for 1 < . i ~ d - 1  

Op3 o 3~-~ =Vl V e ( v l p ( O ' ( 5 1 ) + v 2 p ( O ' ~ 2 ) + q ) ' a i  

and 

01)3 =vt Ve(vlp(O, cSl)+v~p(O,~2)+q). 
~-d 0 

--al  .bt  
[ I - -  (n(OD 1 }" H((02))  2 ] 1/2 a l  

+ v2 Ve(vl  p(O, o5,) + v2p(O, 032) + q) 

= vl Ve(vl  p(O, c5,) + v2 p(O, o02) + q) .  a a 

V 1 0 2 
bl 

[ 1 - -  (/ '/(COl)" 17((02))23 1/2 
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Because a~ ..... aa is an orthonormal basis, there is a j  such that 

0%. lYe(v, p(0, 03~) + v2p(0, c02) + q)l ~>Td go 

and 10P3/&cj[ ~>g0/(2 x//-~) in a neighborhood of the origin. Make a final 
change of variables replacing %. by P3- The Jacobian for the composite 
change of variables from (09~, c02) to 

to 

to 

( < ,  =_, ..... = , _ , , / ~  ..... /~ ,_ , )  

( ~  ..... o~,,, ~,_ ..... ~ , _ , )  

( (~ , ) ,  <.,<.,,.,+ j .  (13,)2<.,<_,_ , .  ;3) 

is bounded by const �9 r//J- ~. Covering S x S by a finite number of such coor- 
dinate patches, we have 

f 
const . t I 

T(e) ~ const - r/p- ~ dp3 <~ const - r/p 
-- const �9 r/ 

(A.10) 

The contribution from the set of exceptional momenta o ~ is bounded 
using Assumption A3: fix ag~ e S, let @(col) be as in (1.31), and let 

~'r = {CO e S :  [- 1 - -  ( / / ( C O l ) .  1 ' / ( (02))  2 ] 1/2 < i i i - / 3 }  ( A . 1 1 )  

Then by A3(ii), ~,o,c Ur(~(co~)) with r =  (1/~-p/Z~) ~/p (this p is now that 
from A3, not the "radial" coordinate), so by A3(i), 

Is dco2 <~ (Zo(Z1) -l / ,)  rl.-(I -/~)/p E(c) <<. do91 Iu,(~,o, ) (A.12) 

The optimal bound is when x(1 - f l ) /p  =fl,  that is, f l=K/ (K+p) .  II 

Lemrnd A.2. Let d =,Sdz(a, JV, go, g2, g3) be as in (1.53). Then d 
is open, and p, ~, Z o, Z~, and thus Cvo~ can be chosen uniformly on d ,  
i.e., (1.33) holds with the same e and Cvo~ for all e ~ d .  

Proof. It is obvious by definition of ~r that it is an open set. Let 
toe S =  S(e). Since [n(co)[ = 1, dn(co)h is orthogonal to n(co)e R a for all h 
in the tangent space at co. Now, ~(o9), defined in (1.31), is the zero set of 
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~bo~: S--*12~21(S), co't--~n(co') ^ n(co). Here dqb,,,(co')=dn(co') ^ n(co), the 
mentioned orthogonality, and rank dn ~> cr imply that ~(o9) is a C -  ~-sub- 
manifold of S of codimension ~>a. It is now clear that Assumption A3 
holds, with a: = a, p = 1, and with Zo and Z~ depending on the smallest 
eigenvalue (in absolute value), hence bounded by a function of g3. Unifor- 
mity of Cvot on d,_(a, Jg',go, gz, g3) follows from (A.7), that of ~ from 
Proposition 1.I. I 

APPENDIX B. THE ONE-FERMION PROBLEM 

Let d~>2, F be a lattice of maximal rank in R '1, and 

F # = {b ~ ~a[ (b,  y)  E 2nZ for all y ~ F} (B.1) 

be its dual. Let q(x) be a smooth potential that is periodic with respect to 
F. Then the Schr6dinger operator - ( 1 / 2 m ) A + q ( x )  commutes with the 
unitary lattice translation operators 

(T"~b)(x) = ~b(x + y), y ~ F  (B.2) 

so that the spectrum of - ( 1 / 2 m ) A  +q(x)  is the union over h'~ Ra/F # of 
the spectra of the boundary value problem 

2m + = (B.3) 
r + y)=ei<~"~'>~(x) V y e F  

Label the eigenvalues of this problem, in increasing order, G(x), v~ N. 
Denote the corresponding eigenfunctions ~b~.v(x) and normalize them by 
the condition that 

fR dx [~b~.v(x)t-'= Vr:=VoI(Ra/F) (B.4) 
air 

This normalization is chosen so that when q = 0 ,  {~b ..... lye  N} = {ei(k'x>[ 
k ~ K + F ~ }, and G(Ic) = (1/2m) k 2. The boundary value problem 

( - - ~ 1  d 2 m  +q)~b=2~b 
(B.5) 

~b(x + y) = e~<"">c~(x) gy e F 
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is unitarily equivalent to 

(2--~ ( - i V  + h-)2 + q ) u = 2 u  
(B.6) 

u(x + 7) = u(x) V~, ~ F 

As ( - i V + x ) - '  is an analytic relatively bounded perturbation of -A ,  the 
eigenvalues e,,(x) and eigenfunctions c~..v(x) depend analytically on h at 
every K for which e,,(x) is a simple eigenvalue. The Fermi surface 

= {x[ 3v such that ev(h) =p} (B.7) 

for chemical potential p is smooth at every h" for which 

ev(K) =p  = (a) e,,(x) is a simple eigenvalue 

(b) Ve,,(x) 4:0 
(B.8) 

Since Ve,,(h-) = 0 is a system of d equations in d unknowns x, condition (b) 
is generically violated only at isolated points in ~d/F#. In this paper, we 
exclude it by Assumption A2. We also restrict consideration to one band 
since for bands separated by a gap, the band index plays no interesting 
role. 

The free two-point Schwinger function is 

C(~, ~ ' )= - ( ~ 0 ,  rs  q)o) 

1 
-- ( VrLd)2 ~ ~bk(~) ~k'(r e-'C"(~)-")~e'~'~")-"w 

k , k '  

x (~o ,  T[ak.~a~',,r q5o) 

X 

1 
VrLdu~. q~u(~) ~v(~') e - ( e " ( ~ ) - - / ' ) r e ( e r  a , a  ' 

{ -X(e~(k)</t),  r~<r' 
Z(e,,(k) > p). v > r '  

6 1 ~- ~,~' "-~-~ ~ ~k(r ~k(r e-(~"~)-")(~-~') 
--Fx'~ k 

x ~X(e~(k) < / l ) ,  r ~< r '  
( -Z(e . (k )  >/t), r > r '  

- 6  ~ dko 1 
(B.9) 

ik o - e.(K) 
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where 

e~(K) = e~(K)-/x (B.10) 

and for r = r' the limit r -  r '  /" 0 is implied. In the infinite-volume limit 

IR dko dK 
C(~, ~') = ~ . ~ , ?  • 2:r (2n) a~bk(~) ~k(~') e-ik~ 

Since we consider only one band, we drop v and set h" = k. 

iko--e,,(K) 
(B.11) 
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